Self-Supervised Intra-Modal and Cross-Modal Contrastive Learning for Point Cloud Understanding

点云 计算机科学 人工智能 计算机视觉 分割 特征提取 模式识别(心理学) RGB颜色模型 特征(语言学) 语言学 哲学
作者
Yue Wu,Jiaming Liu,Maoguo Gong,Peiran Gong,Xiaolong Fan,A. K. Qin,Qiguang Miao,Wenping Ma
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1626-1638 被引量:26
标识
DOI:10.1109/tmm.2023.3284591
摘要

Learning effective representations from unlabeled data is a challenging task for point cloud understanding. As the human visual system can map concepts learned from 2D images to the 3D world, and inspired by recent multimodal research, we introduce data from point cloud modality and image modality for joint learning. Based on the properties of point clouds and images, we propose CrossNet, a comprehensive intra- and cross-modal contrastive learning method that learns 3D point cloud representations. The proposed method achieves 3D-3D and 3D-2D correspondences of objectives by maximizing the consistency of point clouds and their augmented versions, and with the corresponding rendered images in invariant space. We further distinguish the rendered images into RGB and grayscale images to extract color and geometric features, respectively. These training objectives combine feature correspondences between modalities to combine rich learning signals from point clouds and images. Our CrossNet is simple: we add a feature extraction module and a projection head module to the point cloud and image branches, respectively, to train the backbone network in a self-supervised manner. After the network is pretrained, only the point cloud feature extraction module is required for fine-tuning and directly predicting results for downstream tasks. Our experiments on multiple benchmarks demonstrate improved point cloud classification and segmentation results, and the learned representations can be generalized across domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助llopcop采纳,获得20
刚刚
深情安青应助copyaa采纳,获得10
1秒前
1秒前
Sam发布了新的文献求助10
1秒前
一韩之信完成签到,获得积分10
1秒前
GOODYUE发布了新的文献求助10
1秒前
2秒前
鲜艳的棒棒糖完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
Jerry完成签到,获得积分10
2秒前
小蘑菇应助十四采纳,获得10
2秒前
田様应助qq158014169采纳,获得10
3秒前
研友_VZG7GZ应助xiaoding采纳,获得10
3秒前
昭昭完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
pp发布了新的文献求助10
4秒前
lsl应助gzl采纳,获得10
4秒前
5秒前
深情安青应助无风风采纳,获得10
5秒前
研友_nEjRNZ发布了新的文献求助30
5秒前
小庄完成签到 ,获得积分10
5秒前
嘉浩完成签到,获得积分10
6秒前
6秒前
柯飞扬完成签到,获得积分10
6秒前
悦valiant完成签到,获得积分10
7秒前
UNIQUE完成签到,获得积分10
8秒前
漫漫完成签到,获得积分20
8秒前
123完成签到,获得积分20
8秒前
cheng完成签到,获得积分10
8秒前
橘子发布了新的文献求助10
8秒前
ltc完成签到,获得积分10
9秒前
廿一完成签到,获得积分10
9秒前
无花果应助几两采纳,获得10
9秒前
FashionBoy应助真实的仙人掌采纳,获得10
10秒前
搜集达人应助cc采纳,获得10
10秒前
阿尔法突袭完成签到,获得积分10
10秒前
HangSun发布了新的文献求助50
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676