亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

POS0925 AUTOMATIC SCORING OF ULTRASOUND SYNOVIAL HYPERTROPHY IN RHEUMATOID ARTHRITIS THROUGH INTEGRATING MULTIPLE CONVOLUTIONAL NEURAL NETWORK MODELS

医学 滑膜炎 卷积神经网络 类风湿性关节炎 人工智能 手腕 肘部 指间关节 模式识别(心理学) 放射科 内科学 计算机科学 外科
作者
Chung‐Chien Huang,Peng Huang,Kai‐Jieh Yeo,Chih‐Jung Chang,Kuo-Chen Wu,Wanjin Hong,Shun‐Hsyung Chang,Joung‐Liang Lan,Da‐Yuan Chen,Chia‐Hung Kao
标识
DOI:10.1136/annrheumdis-2023-eular.4166
摘要

Background

The OMERACT-EULAR Synovitis Scoring (OESS) system is worldwide used to evaluate arthritis severity on ultrasound (US) images. Because of inter-observer and intra-observer variability, deep learning (DL) has been applied in high-quality image interpretation and analysis. Previous studies mostly focused on Doppler US (DUS) classification by convolutional neural network (CNN), which could provide objective assessment. However, the reports of DL intervention in grey scale (GS) US image automatic measurements are limited.

Objectives

The aim of this study was to develop an integrated multiple CNN model in precise scoring GS US images from rheumatoid arthritis (RA) patients.

Methods

The standard US images from patients of RA were retrospectively selected by three 10-years US experienced rheumatologist together and were graded according to the OESS system. Six different joints data were taken, including proximal interphalangeal, metacarpophalangeal, wrist, elbow, knee and ankle joints. We conducted the DL model integrating three binary CNNs to predict four-class GS US scoring (Figure 1). The accuracy of the trained model was tested by an independent test data.

Results

Total 678 images from 447 patients of RA were used in this study. These images were divided into training (n=611) and testing (n=67) sets. The integrated multiple CNNs model could achieve a four-class accuracy of 77.6%. The individual accuracy of grades 0, 1, 2 and 3 were 68.4%, 77.3%, 73.3% and 100%, respectively (Table 1). Furthermore, we found that adding on anatomic site parameters or labeling areas of interest would establish a better average area under curve (AUC) with 92.6% and 89.0%.

Conclusion

Our study suggests the possibility of using the integrated multiple CNNs model in grading synovial hypertrophy of RA, which is critical in RA healthcare. External validation would be required to confirm the predictive ability of this model.

References

[1]D’Agostino MA et al. RMD Open. 2017 Jul 11;3(1):e000428. [2]Andersen JKH et al. RMD Open. 2019 Mar 30;5(1):e000891. [3]Christensen ABH et al. Ann Rheum Dis. 2020 Sep;79(9):1189-1193. [4]Shin Y et al. Ultrasonography. 2021 Jan;40(1):30-44. [5]Zhou Z et al. Patterns (N Y). 2022 Sep 29;3(10):100592.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄之又玄完成签到,获得积分10
11秒前
1分钟前
1分钟前
1分钟前
1分钟前
一二完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
昒冥完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
昒冥发布了新的文献求助10
2分钟前
ph完成签到 ,获得积分10
3分钟前
Kapur发布了新的文献求助100
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
Kapur完成签到,获得积分10
4分钟前
4分钟前
科目三应助涂烁采纳,获得30
4分钟前
4分钟前
pp完成签到,获得积分10
4分钟前
4分钟前
科目三应助ZXX采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
ZXX发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505215
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867