已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

POS0925 AUTOMATIC SCORING OF ULTRASOUND SYNOVIAL HYPERTROPHY IN RHEUMATOID ARTHRITIS THROUGH INTEGRATING MULTIPLE CONVOLUTIONAL NEURAL NETWORK MODELS

医学 滑膜炎 卷积神经网络 类风湿性关节炎 人工智能 手腕 肘部 指间关节 模式识别(心理学) 放射科 内科学 计算机科学 外科
作者
Chung‐Chien Huang,Peng Huang,Kai‐Jieh Yeo,Chih‐Jung Chang,Kuo-Chen Wu,Wanjin Hong,Shun‐Hsyung Chang,Joung‐Liang Lan,Da‐Yuan Chen,Chia‐Hung Kao
标识
DOI:10.1136/annrheumdis-2023-eular.4166
摘要

Background

The OMERACT-EULAR Synovitis Scoring (OESS) system is worldwide used to evaluate arthritis severity on ultrasound (US) images. Because of inter-observer and intra-observer variability, deep learning (DL) has been applied in high-quality image interpretation and analysis. Previous studies mostly focused on Doppler US (DUS) classification by convolutional neural network (CNN), which could provide objective assessment. However, the reports of DL intervention in grey scale (GS) US image automatic measurements are limited.

Objectives

The aim of this study was to develop an integrated multiple CNN model in precise scoring GS US images from rheumatoid arthritis (RA) patients.

Methods

The standard US images from patients of RA were retrospectively selected by three 10-years US experienced rheumatologist together and were graded according to the OESS system. Six different joints data were taken, including proximal interphalangeal, metacarpophalangeal, wrist, elbow, knee and ankle joints. We conducted the DL model integrating three binary CNNs to predict four-class GS US scoring (Figure 1). The accuracy of the trained model was tested by an independent test data.

Results

Total 678 images from 447 patients of RA were used in this study. These images were divided into training (n=611) and testing (n=67) sets. The integrated multiple CNNs model could achieve a four-class accuracy of 77.6%. The individual accuracy of grades 0, 1, 2 and 3 were 68.4%, 77.3%, 73.3% and 100%, respectively (Table 1). Furthermore, we found that adding on anatomic site parameters or labeling areas of interest would establish a better average area under curve (AUC) with 92.6% and 89.0%.

Conclusion

Our study suggests the possibility of using the integrated multiple CNNs model in grading synovial hypertrophy of RA, which is critical in RA healthcare. External validation would be required to confirm the predictive ability of this model.

References

[1]D’Agostino MA et al. RMD Open. 2017 Jul 11;3(1):e000428. [2]Andersen JKH et al. RMD Open. 2019 Mar 30;5(1):e000891. [3]Christensen ABH et al. Ann Rheum Dis. 2020 Sep;79(9):1189-1193. [4]Shin Y et al. Ultrasonography. 2021 Jan;40(1):30-44. [5]Zhou Z et al. Patterns (N Y). 2022 Sep 29;3(10):100592.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助北斗采纳,获得10
2秒前
坚定的泥猴桃完成签到 ,获得积分10
4秒前
阿泡阿茶和阿壶完成签到,获得积分10
7秒前
维维完成签到 ,获得积分10
8秒前
脑洞疼应助哭泣的若翠采纳,获得10
9秒前
10秒前
wanghao完成签到 ,获得积分10
10秒前
shjyang完成签到,获得积分0
12秒前
13秒前
芋泥发布了新的文献求助10
14秒前
14秒前
赘婿应助威海大雪采纳,获得10
15秒前
Qiancheng完成签到 ,获得积分10
15秒前
专注的芷完成签到 ,获得积分10
15秒前
归海梦岚完成签到,获得积分0
16秒前
安静店员发布了新的文献求助10
17秒前
北溟鱼发布了新的文献求助10
18秒前
顺心凡之完成签到,获得积分10
18秒前
无花果应助芋泥采纳,获得10
19秒前
叮叮完成签到 ,获得积分10
21秒前
hnx1005完成签到 ,获得积分10
22秒前
含糊的蚂蚁完成签到 ,获得积分10
28秒前
小番茄完成签到 ,获得积分10
30秒前
香菜头完成签到 ,获得积分10
30秒前
36秒前
平底锅攻击完成签到 ,获得积分10
39秒前
ywayw发布了新的文献求助10
40秒前
卡恩完成签到 ,获得积分0
40秒前
香风智乃完成签到 ,获得积分10
41秒前
yqsf789发布了新的文献求助10
42秒前
比保暖还要暖完成签到,获得积分10
44秒前
广东最奶的龙完成签到,获得积分10
45秒前
儒雅涵易完成签到 ,获得积分10
45秒前
烂漫的断秋完成签到 ,获得积分10
47秒前
48秒前
IrG完成签到 ,获得积分10
52秒前
JFP完成签到,获得积分10
54秒前
CipherSage应助Tao2023采纳,获得10
57秒前
自由的绮兰完成签到 ,获得积分10
57秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275