Root cause localization for wind turbines using physics guided multivariate graphical modeling and fault propagation analysis

异常检测 计算机科学 邻接矩阵 风力发电 图形 数据挖掘 人工智能 时间序列 多元统计 机器学习 工程类 理论计算机科学 电气工程
作者
Chenlong Feng,Chao Liu,Dongxiang Jiang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111838-111838 被引量:1
标识
DOI:10.1016/j.knosys.2024.111838
摘要

Under the background of widespread utilization of wind energy, the improvement of power generation efficiency and the reduction of operation and maintenance costs have increased the demand for anomaly detection and localization of wind turbines through fault propagation analysis, while the large-scale data collected by SCADA systems provide sufficient data support and promising assistance for this purpose. It is an effective and cost-saving solution to this demand to construct a high-precision wind turbine digital twin model under normal operating conditions based on multivariate monitoring data, and to realize root cause localization based on prediction deviation and backtracking analysis. This paper proposes a root cause localization framework for wind turbines based on explicit-implicit knowledge fusion and multivariate time-series graph neural networks, fully utilizing the inter-variable dependencies mining capability of graph structure learning and the temporal prediction advantage of time-series graph neural networks. Five types of explicit knowledge based on explicit rules are constructed to describe the explicit relationships between monitoring variables. The fused knowledge (i.e., graph adjacency matrix) is obtained by fusing the explicit knowledge with the implicit knowledge hidden in the data through a quasi-hard-attention mechanism based on the idea of graph structure learning. A high-precision digital twin model for wind turbines based on fused knowledge is constructed using the multivariate time-series graph neural network. The anomaly degree of monitoring variables' state is defined based on the prediction deviation, with which the propagation of fault's state over time can be accurately described, and the root cause localization through backtracking analysis can be achieved. Case studies are conducted using field fault data from a wind farm, a sugar factory and a thermal power plant. The results show that the proposed framework can provide a solution for studying the fault propagation process and root cause localization, also demonstrating certain robustness and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣椒小皇纸完成签到 ,获得积分10
刚刚
1秒前
结实智宸完成签到,获得积分10
2秒前
宇心完成签到,获得积分10
2秒前
烟花应助啵清啵采纳,获得10
3秒前
4秒前
yznfly应助清脆的雁丝采纳,获得30
5秒前
6秒前
心随风飞完成签到,获得积分10
6秒前
大模型应助XZZ采纳,获得10
7秒前
zz发布了新的文献求助20
7秒前
填充物完成签到 ,获得积分10
8秒前
小小aa16完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
重生之我的女票是黄毛完成签到,获得积分10
10秒前
今后应助耍酷冬卉采纳,获得10
11秒前
11秒前
GGBoy发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
希望天下0贩的0应助柚子采纳,获得10
12秒前
13秒前
13秒前
玛丽驳回了ll应助
13秒前
14秒前
14秒前
负责的雨柏完成签到,获得积分10
14秒前
chengxiaoli发布了新的文献求助10
15秒前
15秒前
15秒前
精明莫言发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
HHHH完成签到,获得积分10
17秒前
西西发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970004
求助须知:如何正确求助?哪些是违规求助? 3514701
关于积分的说明 11175468
捐赠科研通 3250051
什么是DOI,文献DOI怎么找? 1795187
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804925