亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Root cause localization for wind turbines using physics guided multivariate graphical modeling and fault propagation analysis

异常检测 计算机科学 邻接矩阵 风力发电 图形 数据挖掘 人工智能 时间序列 多元统计 机器学习 工程类 理论计算机科学 电气工程
作者
Chenlong Feng,Chao Liu,Dongxiang Jiang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111838-111838 被引量:1
标识
DOI:10.1016/j.knosys.2024.111838
摘要

Under the background of widespread utilization of wind energy, the improvement of power generation efficiency and the reduction of operation and maintenance costs have increased the demand for anomaly detection and localization of wind turbines through fault propagation analysis, while the large-scale data collected by SCADA systems provide sufficient data support and promising assistance for this purpose. It is an effective and cost-saving solution to this demand to construct a high-precision wind turbine digital twin model under normal operating conditions based on multivariate monitoring data, and to realize root cause localization based on prediction deviation and backtracking analysis. This paper proposes a root cause localization framework for wind turbines based on explicit-implicit knowledge fusion and multivariate time-series graph neural networks, fully utilizing the inter-variable dependencies mining capability of graph structure learning and the temporal prediction advantage of time-series graph neural networks. Five types of explicit knowledge based on explicit rules are constructed to describe the explicit relationships between monitoring variables. The fused knowledge (i.e., graph adjacency matrix) is obtained by fusing the explicit knowledge with the implicit knowledge hidden in the data through a quasi-hard-attention mechanism based on the idea of graph structure learning. A high-precision digital twin model for wind turbines based on fused knowledge is constructed using the multivariate time-series graph neural network. The anomaly degree of monitoring variables' state is defined based on the prediction deviation, with which the propagation of fault's state over time can be accurately described, and the root cause localization through backtracking analysis can be achieved. Case studies are conducted using field fault data from a wind farm, a sugar factory and a thermal power plant. The results show that the proposed framework can provide a solution for studying the fault propagation process and root cause localization, also demonstrating certain robustness and generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
香蕉觅云应助和敬清寂采纳,获得10
7秒前
14秒前
和敬清寂发布了新的文献求助10
19秒前
和敬清寂完成签到,获得积分20
27秒前
1分钟前
123发布了新的文献求助10
1分钟前
666完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分20
1分钟前
vegs发布了新的文献求助10
1分钟前
研友_VZG7GZ应助123采纳,获得10
1分钟前
vegs完成签到,获得积分20
1分钟前
老宇126完成签到,获得积分10
1分钟前
2分钟前
木子发布了新的文献求助10
2分钟前
木子完成签到,获得积分20
2分钟前
3分钟前
生言生语完成签到,获得积分10
4分钟前
一辉完成签到 ,获得积分10
4分钟前
木子关注了科研通微信公众号
4分钟前
mengyuhuan完成签到 ,获得积分0
4分钟前
5分钟前
烟花应助干重采纳,获得10
5分钟前
5分钟前
立恒儿完成签到,获得积分10
6分钟前
清净163完成签到,获得积分10
6分钟前
清净126完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
Wilson完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助正直的山雁采纳,获得10
8分钟前
小小样发布了新的文献求助10
8分钟前
科研通AI2S应助古月采纳,获得10
8分钟前
spark810应助科研通管家采纳,获得30
8分钟前
小小样完成签到,获得积分10
8分钟前
严冰蝶完成签到 ,获得积分10
8分钟前
9分钟前
慕青应助omegaouy采纳,获得10
9分钟前
星辰大海应助木木采纳,获得10
10分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085446
求助须知:如何正确求助?哪些是违规求助? 2738281
关于积分的说明 7548854
捐赠科研通 2387918
什么是DOI,文献DOI怎么找? 1266219
科研通“疑难数据库(出版商)”最低求助积分说明 613332
版权声明 598584