Boosting electrocatalytic performance of ZnFe2O4/CNT via synergy of CNT defect and oxygen vacancies

煅烧 尖晶石 X射线光电子能谱 催化作用 氧气 材料科学 纳米技术 拉曼光谱 介电谱 电催化剂 热液循环 化学工程 化学 电化学 冶金 电极 有机化学 工程类 物理化学 物理 光学
作者
Yonghao Wang,Zhenghao Lu,Shuang Wu,Zhiwei Zou,Xinying Zhang,Yongjing Wang
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (3): 112839-112839 被引量:3
标识
DOI:10.1016/j.jece.2024.112839
摘要

Spinel-type complex oxides are considered promising electrocatalysts, nevertheless, the mechanism of electrocatalytic reduction of O2 to generate H2O2 and to activate H2O2 still needs to be further explored. In this work, the dependence of selectivity of electrocatalytic O2 to generate H2O2 and the efficiency of activating H2O2 of defect sites in ZnFe2O4/CNT composites were investigated based on experimental data and characterization. Firstly, the ZnFe2O4/CNT composites were obtained by hydrothermal method combined with high-temperature calcination. Then phenol was used as a typical pollutant to evaluate its electrocatalytic performance. The results indicated that ZnFe2O4/CNT can degrade nearly 100% phenol of 20 mg/L and appears excellent TOC removal efficiency. Impedance experiments showed that the existence of CNT significantly promoted the electron transfer for ZnFe2O4/CNT. Raman spectroscopy and XPS analysis disclosed that the defect degree of CNT as well as oxygen vacancies of ZnFe2O4 in the ZnFe2O4/CNT composites were higher than those of the individual CNT and ZnFe2O4, greatly facilitating the adsorption of O2. Consequently, more O2 was reduced electrocatalytically to H2O2 via the 2e process. Free radical quenching experiments and Fenton experiments showed that homogeneous and heterogeneous activation jointly promoted the conversion of H2O2 to ·OH. This work provides a strategy for the design of efficient electrocatalysts with spinel structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
花卷发布了新的文献求助10
1秒前
1秒前
mieyy应助SGQT采纳,获得10
1秒前
喵喵完成签到 ,获得积分10
2秒前
CodeCraft应助李李采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
lei完成签到,获得积分20
3秒前
HW发布了新的文献求助10
3秒前
冷静书白完成签到 ,获得积分20
4秒前
旦旦发布了新的文献求助10
5秒前
spring完成签到,获得积分10
6秒前
卡拉几黑发布了新的文献求助10
6秒前
lei发布了新的文献求助10
6秒前
饱满服饰发布了新的文献求助10
7秒前
852应助涨涨涨采纳,获得10
7秒前
7秒前
丘比特应助萧怡采纳,获得10
7秒前
7秒前
芋泥啵啵完成签到,获得积分10
7秒前
朱莹莹发布了新的文献求助10
7秒前
8秒前
PYM发布了新的文献求助10
8秒前
科研通AI5应助鸢尾采纳,获得10
8秒前
xzy998应助fjljylm采纳,获得10
9秒前
9秒前
9秒前
杨佳文完成签到,获得积分20
9秒前
9秒前
10秒前
成就灭龙完成签到,获得积分10
10秒前
李李完成签到,获得积分10
11秒前
12秒前
12秒前
喻萃发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086165
求助须知:如何正确求助?哪些是违规求助? 4302062
关于积分的说明 13406546
捐赠科研通 4127185
什么是DOI,文献DOI怎么找? 2260201
邀请新用户注册赠送积分活动 1264382
关于科研通互助平台的介绍 1198584