亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting electrocatalytic performance of ZnFe2O4/CNT via synergy of CNT defect and oxygen vacancies

煅烧 尖晶石 X射线光电子能谱 催化作用 氧气 材料科学 纳米技术 拉曼光谱 介电谱 电催化剂 热液循环 化学工程 化学 电化学 冶金 电极 有机化学 工程类 物理化学 物理 光学
作者
Yonghao Wang,Zhenghao Lu,Shuang Wu,Zhiwei Zou,Xinying Zhang,Yongjing Wang
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:12 (3): 112839-112839 被引量:3
标识
DOI:10.1016/j.jece.2024.112839
摘要

Spinel-type complex oxides are considered promising electrocatalysts, nevertheless, the mechanism of electrocatalytic reduction of O2 to generate H2O2 and to activate H2O2 still needs to be further explored. In this work, the dependence of selectivity of electrocatalytic O2 to generate H2O2 and the efficiency of activating H2O2 of defect sites in ZnFe2O4/CNT composites were investigated based on experimental data and characterization. Firstly, the ZnFe2O4/CNT composites were obtained by hydrothermal method combined with high-temperature calcination. Then phenol was used as a typical pollutant to evaluate its electrocatalytic performance. The results indicated that ZnFe2O4/CNT can degrade nearly 100% phenol of 20 mg/L and appears excellent TOC removal efficiency. Impedance experiments showed that the existence of CNT significantly promoted the electron transfer for ZnFe2O4/CNT. Raman spectroscopy and XPS analysis disclosed that the defect degree of CNT as well as oxygen vacancies of ZnFe2O4 in the ZnFe2O4/CNT composites were higher than those of the individual CNT and ZnFe2O4, greatly facilitating the adsorption of O2. Consequently, more O2 was reduced electrocatalytically to H2O2 via the 2e process. Free radical quenching experiments and Fenton experiments showed that homogeneous and heterogeneous activation jointly promoted the conversion of H2O2 to ·OH. This work provides a strategy for the design of efficient electrocatalysts with spinel structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yannn1126完成签到,获得积分10
2秒前
20秒前
天天天晴完成签到 ,获得积分10
20秒前
halo完成签到,获得积分10
21秒前
38秒前
halo发布了新的文献求助10
43秒前
无花果应助从容幼南采纳,获得10
43秒前
务实的访卉完成签到 ,获得积分10
45秒前
典雅的皓轩完成签到 ,获得积分10
1分钟前
1分钟前
李爱国应助777采纳,获得10
1分钟前
1分钟前
drirshad完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助满意的世界采纳,获得10
1分钟前
Mipe发布了新的文献求助10
1分钟前
777发布了新的文献求助10
1分钟前
1分钟前
Mipe完成签到,获得积分10
1分钟前
从容幼南发布了新的文献求助10
1分钟前
1分钟前
从容幼南完成签到,获得积分10
2分钟前
yannn1126发布了新的文献求助10
2分钟前
Wang完成签到,获得积分10
2分钟前
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
Wang发布了新的文献求助10
2分钟前
宋宋不迷糊完成签到 ,获得积分10
2分钟前
2分钟前
ljz完成签到,获得积分10
2分钟前
爆米花应助NEKO采纳,获得10
2分钟前
科研填坑人完成签到,获得积分10
2分钟前
2分钟前
思源应助Papayaaa采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853366
捐赠科研通 4689194
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608