Boosting electrocatalytic performance of ZnFe2O4/CNT via synergy of CNT defect and oxygen vacancies

Boosting(机器学习) 氧气 材料科学 纳米技术 化学工程 化学 计算机科学 机器学习 有机化学 工程类
作者
Yonghao Wang,Zhenghao Lu,Shuang Wu,Zhiwei Zou,Xinying Zhang,Yongjing Wang
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:: 112839-112839 被引量:1
标识
DOI:10.1016/j.jece.2024.112839
摘要

Spinel-type complex oxides are considered promising electrocatalysts, nevertheless, the mechanism of electrocatalytic reduction of O2 to generate H2O2 and to activate H2O2 still needs to be further explored. In this work, the dependence of selectivity of electrocatalytic O2 to generate H2O2 and the efficiency of activating H2O2 of defect sites in ZnFe2O4/CNT composites were investigated based on experimental data and characterization. Firstly, the ZnFe2O4/CNT composites were obtained by hydrothermal method combined with high-temperature calcination. Then phenol was used as a typical pollutant to evaluate its electrocatalytic performance. The results indicated that ZnFe2O4/CNT can degrade nearly 100% phenol of 20 mg/L and appears excellent TOC removal efficiency. Impedance experiments showed that the existence of CNT significantly promoted the electron transfer for ZnFe2O4/CNT. Raman spectroscopy and XPS analysis disclosed that the defect degree of CNT as well as oxygen vacancies of ZnFe2O4 in the ZnFe2O4/CNT composites were higher than those of the individual CNT and ZnFe2O4, greatly facilitating the adsorption of O2. Consequently, more O2 was reduced electrocatalytically to H2O2 via the 2e process. Free radical quenching experiments and Fenton experiments showed that homogeneous and heterogeneous activation jointly promoted the conversion of H2O2 to ·OH. This work provides a strategy for the design of efficient electrocatalysts with spinel structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助can采纳,获得10
刚刚
waiting发布了新的文献求助10
1秒前
circles关注了科研通微信公众号
1秒前
123456发布了新的文献求助30
1秒前
ahryue发布了新的文献求助10
1秒前
2秒前
奋斗尔安应助孙佳琦采纳,获得10
2秒前
zlx发布了新的文献求助10
3秒前
北漂盲流关注了科研通微信公众号
3秒前
852应助想游泳的鹰采纳,获得10
4秒前
科目三应助hhhhhhh采纳,获得10
5秒前
潘了今发布了新的文献求助10
6秒前
结实的青荷完成签到,获得积分10
6秒前
水开三天完成签到,获得积分10
6秒前
7秒前
jjl发布了新的文献求助30
7秒前
李健应助1223采纳,获得10
8秒前
8秒前
Jasper应助南卡采纳,获得10
9秒前
xiongran完成签到,获得积分10
10秒前
11秒前
LL4358完成签到,获得积分10
11秒前
11秒前
完美世界应助彭a采纳,获得10
11秒前
yidashi发布了新的文献求助10
12秒前
lab完成签到 ,获得积分0
12秒前
waiting完成签到,获得积分10
12秒前
Drink完成签到 ,获得积分10
12秒前
lixiaolu发布了新的文献求助10
12秒前
13秒前
13秒前
gao完成签到,获得积分10
14秒前
zlx完成签到,获得积分10
15秒前
jjl完成签到,获得积分10
15秒前
赘婿应助小猪佩奇用ak采纳,获得10
16秒前
英俊的铭应助ahryue采纳,获得10
16秒前
Lucifer发布了新的文献求助10
16秒前
落寞若你的完成签到 ,获得积分10
16秒前
16秒前
曲夜白发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313209
求助须知:如何正确求助?哪些是违规求助? 2945574
关于积分的说明 8526168
捐赠科研通 2621359
什么是DOI,文献DOI怎么找? 1433478
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512