Interpretable short-term carbon dioxide emissions forecasting based on flexible two-stage decomposition and temporal fusion transformers

二氧化碳 融合 期限(时间) 分解 环境科学 阶段(地层学) 变压器 计算机科学 化学 地质学 工程类 古生物学 哲学 语言学 物理 有机化学 量子力学 电压 电气工程
作者
Binrong Wu,Han Zeng,Zhongrui Wang,Lin Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111639-111639
标识
DOI:10.1016/j.asoc.2024.111639
摘要

Carbon emissions play a pivotal role in exacerbating the global warming crisis and driving climate change. Accurate and consistent projections of carbon emissions are of utmost importance for nations worldwide, as they shape emission reduction strategies and expedite the pursuit of carbon peaking and carbon neutrality goals. While previous studies have focused on hybrid methodologies for carbon emission forecasting, yielding commendable predictive performance, these approaches often overlook the significance of internal interpretability within the forecasting models. In light of this gap, this study introduces a groundbreaking and elucidating hybrid carbon emission forecasting model that amalgamates the two-stage layer decomposition method, adaptive differential evolution with optional external archive (JADE), and temporal fusion transformers (TFT). To begin with, a series of sub-sequences is derived by employing a flexible two-stage decomposition strategy, which leverages a linear-nonlinear decomposition criterion to thoroughly extract the fluctuating characteristics inherent in the carbon emission series. Subsequently, the JADE algorithm intelligently and efficiently optimizes the parameter combinations within the TFT model, ensuring both stability and reliability of the prediction framework. Empirical investigations conclusively demonstrate the remarkable applicability and efficacy of the proposed model in short-term carbon emission forecasting. By delving into the interpretability of the model's results, the study enhances the capacity of policymakers to devise well-informed strategies based on comprehensive insights gleaned from the forecasting process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
1111发布了新的文献求助10
7秒前
科研通AI2S应助学术猪八戒采纳,获得10
8秒前
诺诺完成签到 ,获得积分10
8秒前
Hello应助欣喜机器猫采纳,获得10
11秒前
15秒前
15秒前
23421完成签到,获得积分10
16秒前
Ava应助qinjiayin采纳,获得10
17秒前
成就的笑南完成签到 ,获得积分10
18秒前
19秒前
shinn发布了新的文献求助10
20秒前
huisu发布了新的文献求助10
21秒前
火星上冥茗完成签到,获得积分10
24秒前
yx_cheng应助terryok采纳,获得30
24秒前
叶子的叶完成签到,获得积分10
27秒前
yyauthor发布了新的文献求助20
27秒前
没有银完成签到,获得积分10
28秒前
上官若男应助shinn采纳,获得10
28秒前
忐忑的新蕾完成签到 ,获得积分10
29秒前
bkagyin应助allofme采纳,获得10
29秒前
科研通AI2S应助yuqinghui98采纳,获得10
30秒前
30秒前
1111完成签到,获得积分20
32秒前
老实向雁完成签到,获得积分10
33秒前
33秒前
LIN完成签到,获得积分10
34秒前
yx_cheng应助鲜于枫采纳,获得200
35秒前
白羊完成签到,获得积分10
37秒前
贪玩的醉波完成签到,获得积分10
37秒前
orixero应助goodgay133采纳,获得10
37秒前
臻灏完成签到,获得积分10
38秒前
38秒前
39秒前
41秒前
shinn发布了新的文献求助10
41秒前
深情安青应助二十四桥采纳,获得10
43秒前
人生有味是清欢完成签到,获得积分10
44秒前
qweer发布了新的文献求助10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468