Machine learning algorithms for the prediction of drought conditions in the Wami River sub-catchment, Tanzania

坦桑尼亚 计算机科学 算法 流域 人工智能 环境科学 地理 环境规划 地图学
作者
Christossy Lalika,Aziz Ul Haq Mujahid,Mturi James,Makarius C.S. Lalika
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier BV]
卷期号:53: 101794-101794 被引量:2
标识
DOI:10.1016/j.ejrh.2024.101794
摘要

Study region: This study refers to the Wami river sub-catchments in Eastern Tanzania.Study Focus: The five-machine learning (ML) algorithms, including long short-term memory (LSTM), multivariate adaptive regression spline (MARS), support vector machine (SVM), extreme learning machine (ELM), and M5 Tree, were used to predict the most widely used drought index, the standard precipitation index (SPI), at six and nine months.Algorithms were established using monthly rainfall data for the period from 1990 to 2022 at five meteorological stations distributed across the Wami River sub-catchment: Barega, Dakawa, Dodoma, Kongwa, and Mandera stations.New hydrological insights for the region.The predicted results of all five ML algorithms were evaluated using several statistical metrics, including Pearson's correlation coefficient (R), mean absolute error (MAE), root mean square error (RMSE), and Nash Sutcliffe efficiency (NSE).The prediction results revealed that LSTM perform better in predicting drought conditions using SPI6 (6-month SPI) and SPI9 (9-month SPI) with the highest NSE of 0.99 in all five stations, and R of 0.99 in four stations except at Kongwa station, where R range from 0.75 to 0.99.These prediction results will aid decision-makers and planners to develop a drought monitoring and drought early warning system in order to strengthen the governance and resilience to the catchment and people on the impacts of water scarcity and climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_J8Dbbn发布了新的文献求助10
刚刚
Aldosong完成签到,获得积分20
刚刚
今后应助Firmian采纳,获得10
刚刚
kiko发布了新的文献求助10
1秒前
李健的小迷弟应助zy采纳,获得10
1秒前
忧郁的白昼完成签到,获得积分10
1秒前
轻松二发布了新的文献求助20
1秒前
2秒前
2秒前
喜悦的向珊完成签到,获得积分10
2秒前
流白完成签到,获得积分10
3秒前
lilyyang发布了新的文献求助30
3秒前
3秒前
3秒前
Charety完成签到,获得积分10
4秒前
5秒前
6秒前
DAJI完成签到,获得积分10
6秒前
呆萌安萱发布了新的文献求助10
6秒前
6秒前
6秒前
Aldosong发布了新的文献求助10
7秒前
7秒前
田様应助简单乐荷采纳,获得10
7秒前
kingwill应助ranj采纳,获得20
8秒前
雨下着的坡道完成签到,获得积分10
8秒前
moonlight发布了新的文献求助10
8秒前
8秒前
紧张的绿茶完成签到,获得积分10
8秒前
8秒前
何处芳歇完成签到,获得积分10
8秒前
强小强完成签到,获得积分10
9秒前
10秒前
10秒前
幸福萝发布了新的文献求助10
11秒前
满天星发布了新的文献求助10
11秒前
11秒前
YY再摆烂发布了新的文献求助10
11秒前
yeah完成签到,获得积分10
11秒前
呆萌安萱完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
First-in-human transcontinental telesurgery collaboration for high intensity-focused ultrasound: a new era in globalizing focal treatment for prostate cancer 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556046
求助须知:如何正确求助?哪些是违规求助? 3984207
关于积分的说明 12334896
捐赠科研通 3654247
什么是DOI,文献DOI怎么找? 2012973
邀请新用户注册赠送积分活动 1047983
科研通“疑难数据库(出版商)”最低求助积分说明 936438