亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning algorithms for the prediction of drought conditions in the Wami River sub-catchment, Tanzania

坦桑尼亚 计算机科学 算法 流域 人工智能 环境科学 地理 环境规划 地图学
作者
Christossy Lalika,Aziz Ul Haq Mujahid,Mturi James,Makarius C.S. Lalika
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:53: 101794-101794 被引量:2
标识
DOI:10.1016/j.ejrh.2024.101794
摘要

Study region: This study refers to the Wami river sub-catchments in Eastern Tanzania.Study Focus: The five-machine learning (ML) algorithms, including long short-term memory (LSTM), multivariate adaptive regression spline (MARS), support vector machine (SVM), extreme learning machine (ELM), and M5 Tree, were used to predict the most widely used drought index, the standard precipitation index (SPI), at six and nine months.Algorithms were established using monthly rainfall data for the period from 1990 to 2022 at five meteorological stations distributed across the Wami River sub-catchment: Barega, Dakawa, Dodoma, Kongwa, and Mandera stations.New hydrological insights for the region.The predicted results of all five ML algorithms were evaluated using several statistical metrics, including Pearson's correlation coefficient (R), mean absolute error (MAE), root mean square error (RMSE), and Nash Sutcliffe efficiency (NSE).The prediction results revealed that LSTM perform better in predicting drought conditions using SPI6 (6-month SPI) and SPI9 (9-month SPI) with the highest NSE of 0.99 in all five stations, and R of 0.99 in four stations except at Kongwa station, where R range from 0.75 to 0.99.These prediction results will aid decision-makers and planners to develop a drought monitoring and drought early warning system in order to strengthen the governance and resilience to the catchment and people on the impacts of water scarcity and climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助魏欣娜采纳,获得10
1秒前
1秒前
维颖完成签到,获得积分10
3秒前
16秒前
20秒前
21秒前
zhvjdb发布了新的文献求助10
25秒前
Raju发布了新的文献求助100
28秒前
英姑应助lpy李采纳,获得10
28秒前
34秒前
zhvjdb完成签到,获得积分10
38秒前
Yuuw发布了新的文献求助10
39秒前
bastien驳回了xxfsx应助
39秒前
40秒前
40秒前
Huzhu应助魏欣娜采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得30
47秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
华仔应助科研通管家采纳,获得10
47秒前
Yuuw完成签到,获得积分10
48秒前
51秒前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
33发布了新的文献求助10
1分钟前
1分钟前
田様应助yydcmnyxx采纳,获得30
1分钟前
1分钟前
RNATx完成签到,获得积分10
1分钟前
lpy李发布了新的文献求助10
1分钟前
lcxw1224完成签到,获得积分10
1分钟前
科目三应助Sherry采纳,获得10
1分钟前
1分钟前
1分钟前
早川发布了新的文献求助10
2分钟前
青柠发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418