Machine learning algorithms for the prediction of drought conditions in the Wami River sub-catchment, Tanzania

坦桑尼亚 计算机科学 算法 流域 人工智能 环境科学 地理 环境规划 地图学
作者
Christossy Lalika,Aziz Ul Haq Mujahid,Mturi James,Makarius C.S. Lalika
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:53: 101794-101794 被引量:2
标识
DOI:10.1016/j.ejrh.2024.101794
摘要

Study region: This study refers to the Wami river sub-catchments in Eastern Tanzania.Study Focus: The five-machine learning (ML) algorithms, including long short-term memory (LSTM), multivariate adaptive regression spline (MARS), support vector machine (SVM), extreme learning machine (ELM), and M5 Tree, were used to predict the most widely used drought index, the standard precipitation index (SPI), at six and nine months.Algorithms were established using monthly rainfall data for the period from 1990 to 2022 at five meteorological stations distributed across the Wami River sub-catchment: Barega, Dakawa, Dodoma, Kongwa, and Mandera stations.New hydrological insights for the region.The predicted results of all five ML algorithms were evaluated using several statistical metrics, including Pearson's correlation coefficient (R), mean absolute error (MAE), root mean square error (RMSE), and Nash Sutcliffe efficiency (NSE).The prediction results revealed that LSTM perform better in predicting drought conditions using SPI6 (6-month SPI) and SPI9 (9-month SPI) with the highest NSE of 0.99 in all five stations, and R of 0.99 in four stations except at Kongwa station, where R range from 0.75 to 0.99.These prediction results will aid decision-makers and planners to develop a drought monitoring and drought early warning system in order to strengthen the governance and resilience to the catchment and people on the impacts of water scarcity and climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代雁桃发布了新的文献求助10
刚刚
Vitrixia发布了新的文献求助30
刚刚
HF完成签到,获得积分20
刚刚
1秒前
了0完成签到 ,获得积分10
1秒前
1秒前
2秒前
凌晨一点的莱茵猫完成签到,获得积分10
2秒前
2秒前
2秒前
Zx_1993应助ss采纳,获得10
2秒前
syx发布了新的文献求助10
2秒前
2秒前
cff完成签到,获得积分10
2秒前
Xuan_Y完成签到,获得积分10
3秒前
情怀应助157295108采纳,获得10
3秒前
物理师z发布了新的文献求助10
3秒前
3秒前
ccc完成签到,获得积分10
3秒前
4秒前
qww完成签到,获得积分10
4秒前
无敌暴龙战神完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
斯文败类应助邱洪晓采纳,获得10
5秒前
6秒前
1900完成签到,获得积分10
6秒前
涛声依旧发布了新的文献求助10
6秒前
科研式发布了新的文献求助10
7秒前
uu完成签到 ,获得积分10
7秒前
深情安青应助抽纸盒采纳,获得10
7秒前
眼睛大的黑猫完成签到,获得积分10
7秒前
8秒前
wanci应助bing采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
一念初见发布了新的文献求助10
9秒前
水水的橙子完成签到,获得积分10
10秒前
充电宝应助ddddd采纳,获得10
10秒前
10秒前
李盛男完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123