Machine learning algorithms for the prediction of drought conditions in the Wami River sub-catchment, Tanzania

坦桑尼亚 计算机科学 算法 流域 人工智能 环境科学 地理 环境规划 地图学
作者
Christossy Lalika,Aziz Ul Haq Mujahid,Mturi James,Makarius C.S. Lalika
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:53: 101794-101794 被引量:2
标识
DOI:10.1016/j.ejrh.2024.101794
摘要

Study region: This study refers to the Wami river sub-catchments in Eastern Tanzania.Study Focus: The five-machine learning (ML) algorithms, including long short-term memory (LSTM), multivariate adaptive regression spline (MARS), support vector machine (SVM), extreme learning machine (ELM), and M5 Tree, were used to predict the most widely used drought index, the standard precipitation index (SPI), at six and nine months.Algorithms were established using monthly rainfall data for the period from 1990 to 2022 at five meteorological stations distributed across the Wami River sub-catchment: Barega, Dakawa, Dodoma, Kongwa, and Mandera stations.New hydrological insights for the region.The predicted results of all five ML algorithms were evaluated using several statistical metrics, including Pearson's correlation coefficient (R), mean absolute error (MAE), root mean square error (RMSE), and Nash Sutcliffe efficiency (NSE).The prediction results revealed that LSTM perform better in predicting drought conditions using SPI6 (6-month SPI) and SPI9 (9-month SPI) with the highest NSE of 0.99 in all five stations, and R of 0.99 in four stations except at Kongwa station, where R range from 0.75 to 0.99.These prediction results will aid decision-makers and planners to develop a drought monitoring and drought early warning system in order to strengthen the governance and resilience to the catchment and people on the impacts of water scarcity and climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲新柔发布了新的文献求助10
刚刚
honey发布了新的文献求助10
刚刚
1秒前
1秒前
Sean发布了新的文献求助10
2秒前
llll发布了新的文献求助10
2秒前
2秒前
lcllyr完成签到,获得积分20
2秒前
WSGQT发布了新的文献求助10
2秒前
蓝天黄土完成签到,获得积分10
3秒前
3秒前
阮楷瑞发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
陌回应助端庄代荷采纳,获得10
4秒前
NexusExplorer应助龙骑士25采纳,获得30
4秒前
4秒前
慕青应助可爱绮采纳,获得10
4秒前
5秒前
生动曼冬发布了新的文献求助10
5秒前
心澄宇静发布了新的文献求助10
5秒前
5秒前
Jasper应助丘山采纳,获得10
6秒前
可可佳发布了新的文献求助10
6秒前
la完成签到,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Wu发布了新的文献求助10
7秒前
拓展完成签到 ,获得积分10
8秒前
曦谷发布了新的文献求助10
8秒前
8秒前
lcllyr发布了新的文献求助20
8秒前
Akim应助qiang采纳,获得10
8秒前
iNk完成签到,获得积分0
9秒前
王玉玺发布了新的文献求助10
9秒前
fanyy完成签到 ,获得积分10
9秒前
yu完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414