Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 比例危险模型 计算机科学 胰腺癌 人工智能 队列 Lasso(编程语言) 胰腺 肿瘤科 生存分析 癌症 机器学习 医学 病理 内科学 万维网
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潸潸发布了新的文献求助10
1秒前
脆弱的仙人掌完成签到,获得积分20
1秒前
成哥发布了新的文献求助10
1秒前
灵巧的坤完成签到,获得积分10
2秒前
王某人完成签到 ,获得积分10
2秒前
欢呼的明雪完成签到,获得积分10
3秒前
3秒前
嘉禾望岗发布了新的文献求助10
3秒前
大橙子完成签到,获得积分10
3秒前
东北信风完成签到 ,获得积分10
3秒前
今后应助祝顺遂采纳,获得10
3秒前
NADA完成签到,获得积分10
4秒前
长安完成签到,获得积分10
4秒前
AA完成签到,获得积分10
4秒前
NANA发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
9秒前
9秒前
10秒前
科研通AI5应助无悔呀采纳,获得10
10秒前
10秒前
littlewhite关注了科研通微信公众号
11秒前
11秒前
零点起步完成签到,获得积分10
11秒前
慕青应助大力的含卉采纳,获得10
11秒前
善良过客发布了新的文献求助10
12秒前
12秒前
12秒前
dildil发布了新的文献求助10
12秒前
12秒前
hu970发布了新的文献求助10
13秒前
13秒前
王思鲁发布了新的文献求助30
13秒前
七个小矮人完成签到,获得积分10
14秒前
Aria完成签到,获得积分10
14秒前
感性的安露应助结实雪卉采纳,获得20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759