Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 比例危险模型 计算机科学 胰腺癌 人工智能 队列 Lasso(编程语言) 胰腺 肿瘤科 生存分析 癌症 机器学习 医学 病理 内科学 万维网
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Sofie采纳,获得10
刚刚
刚刚
刚刚
2秒前
滴迪氐媂完成签到 ,获得积分10
3秒前
SZDN完成签到 ,获得积分10
3秒前
科研通AI6应助华哥采纳,获得30
3秒前
慕青应助氨气采纳,获得10
4秒前
4秒前
4秒前
LiM完成签到,获得积分10
4秒前
李亦然完成签到,获得积分10
4秒前
乐乐应助hmj采纳,获得10
5秒前
Liuzihao发布了新的文献求助10
6秒前
小马甲应助Uoueion采纳,获得10
6秒前
小太阳哈哈完成签到 ,获得积分10
6秒前
小玲子发布了新的文献求助10
7秒前
8秒前
8秒前
高扬发布了新的文献求助10
10秒前
小月986发布了新的文献求助10
11秒前
11秒前
ZHFENGap完成签到,获得积分10
11秒前
英姑应助王梦秋采纳,获得10
11秒前
fjuuu发布了新的文献求助10
12秒前
12秒前
姬师发布了新的文献求助10
13秒前
toking发布了新的文献求助10
13秒前
惠胜发布了新的文献求助10
13秒前
RY完成签到,获得积分10
14秒前
大米完成签到,获得积分10
14秒前
14秒前
小玲子完成签到,获得积分10
14秒前
科研小白完成签到,获得积分10
14秒前
SHIYU发布了新的文献求助30
15秒前
00小费0完成签到,获得积分20
15秒前
15秒前
黄油小xin完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824