Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 比例危险模型 计算机科学 胰腺癌 人工智能 队列 Lasso(编程语言) 胰腺 肿瘤科 生存分析 癌症 机器学习 医学 病理 内科学 万维网
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljh发布了新的文献求助10
刚刚
吴裙裙完成签到,获得积分20
刚刚
1秒前
1秒前
蓝天应助awaer采纳,获得10
2秒前
蓝天应助东方傲儿采纳,获得10
2秒前
灵巧冰露发布了新的文献求助10
2秒前
852应助明理念桃采纳,获得10
2秒前
2秒前
2秒前
3秒前
蓝天应助生命化育采纳,获得10
3秒前
3秒前
青山见我发布了新的文献求助10
3秒前
cfv发布了新的文献求助10
3秒前
大气映冬完成签到,获得积分10
4秒前
4秒前
Criminology34应助无zzz的人采纳,获得10
4秒前
烟花应助yz采纳,获得10
5秒前
5秒前
通通通发布了新的文献求助30
5秒前
5秒前
6秒前
贾哲宇完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
小猪找库里完成签到,获得积分10
7秒前
月月月鸟伟完成签到,获得积分10
7秒前
慕青应助kkeeaa采纳,获得10
7秒前
8秒前
zsqqqqq发布了新的文献求助10
8秒前
个性的紫菜应助上善若水采纳,获得10
8秒前
Ashore发布了新的文献求助10
8秒前
8秒前
俊逸的念桃完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187