Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 特征提取 计算机科学 胰腺癌 人工智能 队列 模式识别(心理学) 特征(语言学) 癌症 医学 病理 内科学 语言学 哲学
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5165asd发布了新的文献求助10
2秒前
2秒前
2秒前
iFan完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
CipherSage应助酷炫觅松采纳,获得10
4秒前
4秒前
燕知南发布了新的文献求助10
4秒前
byumi发布了新的文献求助10
4秒前
yumemakase发布了新的文献求助10
5秒前
研友_VZG7GZ应助cccc采纳,获得10
5秒前
苏卿应助cheng采纳,获得10
5秒前
5秒前
记得接电话完成签到,获得积分10
6秒前
6秒前
辣辣发布了新的文献求助10
7秒前
火星上的醉山完成签到,获得积分10
7秒前
甜甜圈完成签到,获得积分10
7秒前
8秒前
nini完成签到,获得积分20
8秒前
wenjingluo发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
blusky完成签到,获得积分10
9秒前
9秒前
wqx发布了新的文献求助10
9秒前
proton完成签到,获得积分10
9秒前
宇文青寒发布了新的文献求助10
9秒前
大模型应助酷炫觅松采纳,获得10
9秒前
I_won_t发布了新的文献求助10
9秒前
真嗣发布了新的文献求助10
10秒前
不安的怀梦完成签到,获得积分20
10秒前
酷波er应助困鼠了采纳,获得10
11秒前
怕孤独的修杰完成签到 ,获得积分10
12秒前
12秒前
领导范儿应助刘YF采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912