清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 比例危险模型 计算机科学 胰腺癌 人工智能 队列 Lasso(编程语言) 胰腺 肿瘤科 生存分析 癌症 机器学习 医学 病理 内科学 万维网
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charih完成签到 ,获得积分10
12秒前
墨墨完成签到,获得积分10
13秒前
伶俐芷珊完成签到,获得积分10
14秒前
土拨鼠完成签到 ,获得积分10
14秒前
15秒前
文献完成签到 ,获得积分10
19秒前
24秒前
taster发布了新的文献求助10
28秒前
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
芋芋完成签到,获得积分10
30秒前
taster完成签到,获得积分10
39秒前
研友_8y2G0L完成签到,获得积分10
50秒前
天下无马完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
1分钟前
欧阳完成签到,获得积分10
1分钟前
慕容飞凤完成签到,获得积分10
1分钟前
wjx完成签到 ,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
1分钟前
应夏山完成签到 ,获得积分10
1分钟前
七人七发布了新的文献求助30
1分钟前
1分钟前
jjjjjj完成签到,获得积分10
1分钟前
萌大叔发布了新的文献求助10
2分钟前
huyz完成签到,获得积分10
2分钟前
文与武完成签到 ,获得积分10
2分钟前
jiujieweizi完成签到 ,获得积分10
2分钟前
ii完成签到 ,获得积分10
2分钟前
Rondab应助Jason-1024采纳,获得10
2分钟前
aowulan完成签到 ,获得积分10
2分钟前
阿狸完成签到 ,获得积分0
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
七人七发布了新的文献求助10
2分钟前
小王发布了新的文献求助20
2分钟前
共享精神应助王月缶采纳,获得30
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008607
求助须知:如何正确求助?哪些是违规求助? 3548284
关于积分的说明 11298733
捐赠科研通 3282975
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218