Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes

电解质 化学物理 电阻抗 分子动力学 动力学(音乐) 电极 计算生物学 生物物理学 统计物理学 计算机科学 化学 物理 生物 计算化学 物理化学 量子力学 声学
作者
Giovanni Pireddu,Craig Fairchild,Samuel Niblett,Stephen J. Cox,Benjamin Rotenberg
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (18) 被引量:1
标识
DOI:10.1073/pnas.2318157121
摘要

Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助妮妮采纳,获得10
刚刚
张一迪完成签到,获得积分20
刚刚
1秒前
yhy完成签到,获得积分10
1秒前
2秒前
legoman完成签到,获得积分10
2秒前
小莫发布了新的文献求助10
3秒前
月出完成签到 ,获得积分10
4秒前
深情安青应助Copper00采纳,获得10
5秒前
无敌龙傲天完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
李响发布了新的文献求助10
6秒前
7秒前
ryl完成签到 ,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助MARTIN采纳,获得10
10秒前
妮妮发布了新的文献求助10
11秒前
Three发布了新的文献求助10
11秒前
12秒前
魔幻诗兰完成签到,获得积分10
13秒前
15秒前
苦瓜大王完成签到 ,获得积分20
16秒前
16秒前
叶海天发布了新的文献求助10
16秒前
小马甲应助long采纳,获得10
16秒前
probiotics发布了新的文献求助10
16秒前
19秒前
SUDA完成签到,获得积分20
19秒前
搜集达人应助不可思议采纳,获得10
19秒前
科研通AI6应助懦弱的寄灵采纳,获得30
20秒前
小绵羊发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助150
21秒前
21秒前
22秒前
yml发布了新的文献求助10
22秒前
达笙完成签到 ,获得积分10
22秒前
明理冷梅完成签到 ,获得积分10
24秒前
Three发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144941
求助须知:如何正确求助?哪些是违规求助? 4342494
关于积分的说明 13523292
捐赠科研通 4183148
什么是DOI,文献DOI怎么找? 2293925
邀请新用户注册赠送积分活动 1294391
关于科研通互助平台的介绍 1237312