Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study

医学 旁侵犯 磁共振成像 无线电技术 接收机工作特性 逻辑回归 回顾性队列研究 概化理论 放射科 列线图 结直肠癌 肿瘤科 内科学 癌症 统计 数学
作者
Yan Liu,Bai-Jin-Tao Sun,Bai-Jin-Tao Sun,Bing Li,Xiaoxuan Yu,Yong Du
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group Co]
卷期号:30 (16): 2233-2248 被引量:2
标识
DOI:10.3748/wjg.v30.i16.2233
摘要

BACKGROUND Perineural invasion (PNI) has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer (RC). Preoperative prediction of PNI status is helpful for individualized treatment of RC. Recently, several radiomics studies have been used to predict the PNI status in RC, demonstrating a good predictive effect, but the results lacked generalizability. The preoperative prediction of PNI status is still challenging and needs further study. AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients. METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers. The patients underwent pre-operative high-resolution magnetic resonance imaging (MRI) between May 2019 and August 2022. Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging (T2WI) and contrast-enhanced T1WI (T1CE) sequences. The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared (T2WI, T1CE and T2WI + T1CE fusion sequences). A clinical-radiomics (CR) model was established by combining the radiomics features and clinical risk factors. The internal and external validation groups were used to validate the proposed models. The area under the receiver operating characteristic curve (AUC), DeLong test, net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS Among the radiomics models, the T2WI + T1CE fusion sequences model showed the best predictive performance, in the training and internal validation groups, the AUCs of the fusion sequence model were 0.839 [95% confidence interval (CI): 0.757-0.921] and 0.787 (95%CI: 0.650-0.923), which were higher than those of the T2WI and T1CE sequence models. The CR model constructed by combining clinical risk factors had the best predictive performance. In the training and internal and external validation groups, the AUCs of the CR model were 0.889 (95%CI: 0.824-0.954), 0.889 (95%CI: 0.803-0.976) and 0.894 (95%CI: 0.814-0.974). Delong test, NRI, and IDI showed that the CR model had significant differences from other models (P < 0.05). Calibration curves demonstrated good agreement, and DCA revealed significant benefits of the CR model. CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively, which facilitates individualized treatment of RC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助包容的剑采纳,获得10
刚刚
刚刚
1秒前
lynn_zhang发布了新的文献求助10
1秒前
2秒前
xh发布了新的文献求助10
2秒前
所所应助luoshi采纳,获得10
2秒前
飞龙在天完成签到 ,获得积分10
2秒前
深爱不疑完成签到,获得积分10
3秒前
知识四面八方来完成签到 ,获得积分10
3秒前
我就是我完成签到,获得积分10
3秒前
3秒前
3秒前
heart完成签到,获得积分10
3秒前
keroro发布了新的文献求助10
4秒前
5秒前
pzc发布了新的文献求助10
5秒前
深爱不疑发布了新的文献求助10
6秒前
jennie完成签到 ,获得积分10
6秒前
徐徐发布了新的文献求助80
6秒前
不信慕斯完成签到,获得积分10
6秒前
Jokeypu完成签到,获得积分10
6秒前
gnr2000发布了新的文献求助30
7秒前
7秒前
song99完成签到,获得积分10
7秒前
清醒的ZY发布了新的文献求助50
7秒前
二小发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
澹台灭明发布了新的文献求助10
8秒前
8秒前
bkagyin应助AteeqBaloch采纳,获得10
9秒前
二二二发布了新的文献求助10
9秒前
万能图书馆应助LIU采纳,获得10
9秒前
绿麦盲区发布了新的文献求助10
9秒前
FIGGIEKIO完成签到,获得积分10
9秒前
星星发布了新的文献求助10
9秒前
852应助luoshi采纳,获得10
10秒前
小王发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762