已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study

医学 旁侵犯 磁共振成像 无线电技术 接收机工作特性 逻辑回归 回顾性队列研究 概化理论 放射科 列线图 结直肠癌 肿瘤科 内科学 癌症 统计 数学
作者
Yan Liu,Bai-Jin-Tao Sun,Bai-Jin-Tao Sun,Bing Li,Xiaoxuan Yu,Yong Du
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group Co]
卷期号:30 (16): 2233-2248 被引量:2
标识
DOI:10.3748/wjg.v30.i16.2233
摘要

BACKGROUND Perineural invasion (PNI) has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer (RC). Preoperative prediction of PNI status is helpful for individualized treatment of RC. Recently, several radiomics studies have been used to predict the PNI status in RC, demonstrating a good predictive effect, but the results lacked generalizability. The preoperative prediction of PNI status is still challenging and needs further study. AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients. METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers. The patients underwent pre-operative high-resolution magnetic resonance imaging (MRI) between May 2019 and August 2022. Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging (T2WI) and contrast-enhanced T1WI (T1CE) sequences. The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared (T2WI, T1CE and T2WI + T1CE fusion sequences). A clinical-radiomics (CR) model was established by combining the radiomics features and clinical risk factors. The internal and external validation groups were used to validate the proposed models. The area under the receiver operating characteristic curve (AUC), DeLong test, net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS Among the radiomics models, the T2WI + T1CE fusion sequences model showed the best predictive performance, in the training and internal validation groups, the AUCs of the fusion sequence model were 0.839 [95% confidence interval (CI): 0.757-0.921] and 0.787 (95%CI: 0.650-0.923), which were higher than those of the T2WI and T1CE sequence models. The CR model constructed by combining clinical risk factors had the best predictive performance. In the training and internal and external validation groups, the AUCs of the CR model were 0.889 (95%CI: 0.824-0.954), 0.889 (95%CI: 0.803-0.976) and 0.894 (95%CI: 0.814-0.974). Delong test, NRI, and IDI showed that the CR model had significant differences from other models (P < 0.05). Calibration curves demonstrated good agreement, and DCA revealed significant benefits of the CR model. CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively, which facilitates individualized treatment of RC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何小雨完成签到 ,获得积分10
刚刚
Orange应助gww采纳,获得10
5秒前
yy完成签到 ,获得积分10
5秒前
月光完成签到 ,获得积分10
5秒前
糟糕的金针菇完成签到 ,获得积分10
7秒前
Wententh完成签到,获得积分10
11秒前
自觉语琴完成签到 ,获得积分10
11秒前
谦让寻凝完成签到 ,获得积分10
13秒前
英姑应助cp采纳,获得30
16秒前
过时的小蘑菇完成签到 ,获得积分10
17秒前
杨洋完成签到,获得积分20
18秒前
李雷发布了新的文献求助10
18秒前
隐形曼青应助DamenS采纳,获得10
20秒前
LL来了完成签到 ,获得积分10
20秒前
21秒前
Timon发布了新的文献求助10
25秒前
mashibeo完成签到,获得积分10
27秒前
小蘑菇应助wms采纳,获得10
28秒前
柠檬精完成签到 ,获得积分10
29秒前
清风浮云完成签到,获得积分10
31秒前
852应助乐乐宝采纳,获得10
37秒前
打打应助Timon采纳,获得10
41秒前
科研三井泽完成签到,获得积分10
41秒前
李雷完成签到,获得积分10
41秒前
友好的妍完成签到 ,获得积分10
43秒前
XuchaoD完成签到,获得积分10
48秒前
gww完成签到,获得积分20
50秒前
50秒前
Hilda发布了新的文献求助10
53秒前
研友_ndDGVn完成签到 ,获得积分10
55秒前
WDD发布了新的文献求助10
55秒前
星辰大海应助gww采纳,获得10
59秒前
肖趴菜发布了新的文献求助10
1分钟前
Shrine完成签到,获得积分10
1分钟前
Joseph_sss完成签到 ,获得积分10
1分钟前
火星上云朵完成签到 ,获得积分10
1分钟前
1分钟前
dart1023发布了新的文献求助100
1分钟前
1分钟前
坦率的丹烟完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353435
求助须知:如何正确求助?哪些是违规求助? 2978016
关于积分的说明 8683528
捐赠科研通 2659372
什么是DOI,文献DOI怎么找? 1456175
科研通“疑难数据库(出版商)”最低求助积分说明 674297
邀请新用户注册赠送积分活动 665016