Global contextual representation via graph-transformer fusion for hepatocellular carcinoma prognosis in whole-slide images

肝细胞癌 计算机科学 人工智能 图形 计算机视觉 变压器 融合 代表(政治) 自然语言处理 医学 理论计算机科学 内科学 物理 语言学 政治 量子力学 哲学 电压 法学 政治学
作者
Luyu Tang,Songhui Diao,Chao Li,Miaoxia He,Kun Ru,Wenjian Qin
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102378-102378 被引量:6
标识
DOI:10.1016/j.compmedimag.2024.102378
摘要

Current methods of digital pathological images typically employ small image patches to learn local representative features to overcome the issues of computationally heavy and memory limitations. However, the global contextual features are not fully considered in whole-slide images (WSIs). Here, we designed a hybrid model that utilizes Graph Neural Network (GNN) module and Transformer module for the representation of global contextual features, called TransGNN. GNN module built a WSI-Graph for the foreground area of a WSI for explicitly capturing structural features, and the Transformer module through the self-attention mechanism implicitly learned the global context information. The prognostic markers of hepatocellular carcinoma (HCC) prognostic biomarkers were used to illustrate the importance of global contextual information in cancer histopathological analysis. Our model was validated using 362 WSIs from 355 HCC patients diagnosed from The Cancer Genome Atlas (TCGA). It showed impressive performance with a Concordance Index (C-Index) of 0.7308 (95% Confidence Interval (CI): (0.6283-0.8333)) for overall survival prediction and achieved the best performance among all models. Additionally, our model achieved an area under curve of 0.7904, 0.8087, and 0.8004 for 1-year, 3-year, and 5-year survival predictions, respectively. We further verified the superior performance of our model in HCC risk stratification and its clinical value through Kaplan-Meier curve and univariate and multivariate COX regression analysis. Our research demonstrated that TransGNN effectively utilized the context information of WSIs and contributed to the clinical prognostic evaluation of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fys131415完成签到 ,获得积分10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得20
1秒前
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得30
2秒前
Mic应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
洪亭完成签到 ,获得积分10
2秒前
3秒前
浮游应助can采纳,获得10
4秒前
5秒前
偏偏海发布了新的文献求助10
6秒前
赵欣月发布了新的文献求助30
6秒前
njzhangyanyang完成签到,获得积分10
8秒前
思源应助绿绿绿绿采纳,获得10
8秒前
念头发布了新的文献求助10
8秒前
9秒前
yxl0214发布了新的文献求助10
11秒前
xzDoctor完成签到,获得积分10
12秒前
新斯的明的明完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
FashionBoy应助微笑笑南采纳,获得10
13秒前
14秒前
小羊完成签到 ,获得积分10
14秒前
小米发布了新的文献求助10
14秒前
慕青应助克里斯就是逊啦采纳,获得10
17秒前
17秒前
18秒前
19秒前
c7发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494993
求助须知:如何正确求助?哪些是违规求助? 4592726
关于积分的说明 14438503
捐赠科研通 4525579
什么是DOI,文献DOI怎么找? 2479527
邀请新用户注册赠送积分活动 1464324
关于科研通互助平台的介绍 1437256