Global contextual representation via graph-transformer fusion for hepatocellular carcinoma prognosis in whole-slide images

肝细胞癌 计算机科学 人工智能 图形 计算机视觉 变压器 融合 代表(政治) 自然语言处理 医学 理论计算机科学 内科学 物理 语言学 政治 量子力学 哲学 电压 法学 政治学
作者
Luyu Tang,Songhui Diao,Chao Li,Miaoxia He,Kun Ru,Wenjian Qin
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102378-102378 被引量:6
标识
DOI:10.1016/j.compmedimag.2024.102378
摘要

Current methods of digital pathological images typically employ small image patches to learn local representative features to overcome the issues of computationally heavy and memory limitations. However, the global contextual features are not fully considered in whole-slide images (WSIs). Here, we designed a hybrid model that utilizes Graph Neural Network (GNN) module and Transformer module for the representation of global contextual features, called TransGNN. GNN module built a WSI-Graph for the foreground area of a WSI for explicitly capturing structural features, and the Transformer module through the self-attention mechanism implicitly learned the global context information. The prognostic markers of hepatocellular carcinoma (HCC) prognostic biomarkers were used to illustrate the importance of global contextual information in cancer histopathological analysis. Our model was validated using 362 WSIs from 355 HCC patients diagnosed from The Cancer Genome Atlas (TCGA). It showed impressive performance with a Concordance Index (C-Index) of 0.7308 (95% Confidence Interval (CI): (0.6283-0.8333)) for overall survival prediction and achieved the best performance among all models. Additionally, our model achieved an area under curve of 0.7904, 0.8087, and 0.8004 for 1-year, 3-year, and 5-year survival predictions, respectively. We further verified the superior performance of our model in HCC risk stratification and its clinical value through Kaplan-Meier curve and univariate and multivariate COX regression analysis. Our research demonstrated that TransGNN effectively utilized the context information of WSIs and contributed to the clinical prognostic evaluation of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋黄酥酥完成签到,获得积分10
1秒前
fanfan完成签到,获得积分10
1秒前
失眠柚子发布了新的文献求助10
2秒前
科研通AI2S应助占易形采纳,获得30
3秒前
3秒前
陈明阳完成签到,获得积分10
3秒前
水果完成签到,获得积分10
3秒前
WSR完成签到 ,获得积分10
4秒前
drfwjuikesv完成签到,获得积分10
4秒前
Quency完成签到 ,获得积分10
5秒前
Davidjun完成签到,获得积分10
5秒前
刘艺娜完成签到,获得积分10
6秒前
开心的火龙果完成签到,获得积分10
7秒前
aa394805712完成签到 ,获得积分10
7秒前
7秒前
7秒前
852应助1111采纳,获得10
8秒前
泡泡茶壶完成签到,获得积分10
8秒前
有魅力的觅双完成签到,获得积分10
8秒前
简单不言完成签到,获得积分10
8秒前
大胆问枫完成签到,获得积分10
9秒前
挽忆逍遥完成签到 ,获得积分10
10秒前
一木完成签到,获得积分10
10秒前
guan完成签到,获得积分10
10秒前
行者发布了新的文献求助10
11秒前
波奇塔发布了新的文献求助10
11秒前
司空绝山完成签到,获得积分10
11秒前
11秒前
泥鳅面完成签到,获得积分10
11秒前
11秒前
所所应助歇洛克采纳,获得10
12秒前
RRRabbit完成签到,获得积分10
12秒前
12秒前
杉杉完成签到 ,获得积分10
12秒前
Adi完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
susan完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451