Simulation of particle deposition on solar photovoltaic panels based on a new critical capture velocity criterion

沉积(地质) 颗粒沉积 风速 粒子(生态学) 材料科学 临界电离速度 机械 光伏系统 计算流体力学 倾斜(摄像机) 光学 环境科学 气象学 物理 复合材料 地质学 工程类 机械工程 航程(航空) 电气工程 古生物学 海洋学 沉积物
作者
Jun Xie,Hang Zhang,Jinlin Bian,Shuang Wang,Ming Dong,Rundong Li
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171920-171920
标识
DOI:10.1016/j.scitotenv.2024.171920
摘要

Solar energy, as a clean energy source, is becoming increasingly important in the global energy mix. However, particle deposition on the surface of photovoltaic (PV) panels can significantly reduce their power generation efficiency. In this study, the collision-deposition behaviour between silica particles and the surface of PV modules is investigated. The impact process of 13 μm silica particles on the glass surface was recorded by using a high-speed digital camera at various incident velocities and angles. A particle dynamics model was developed to predict the critical capture velocity of particles at different incident angles. It was observed that the critical capture velocity of the particles decreases as the angle of incidence increases. Subsequently, a correlation equation was established between the incident angle and the critical capture velocity, serving as the deposition criterion. Computational Fluid Dynamics (CFD) numerical simulation was employed to simulate particle deposition on PV surfaces under different wind speeds and installation tilting angles. The simulation results demonstrate that the mass of 13 μm silica particles deposited on the surface of PV panels decreases with increasing wind speed. Moreover, under identical inlet wind speeds, the particle deposition mass exhibits an initial increase followed by a subsequent decrease as the installation tilt angle of the PV panel increases. The distribution pattern of particle deposition on PV panel surfaces is diverse; however, predominantly concentrated at the mid-bottom region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助WFLLL采纳,获得10
2秒前
3秒前
CD发布了新的文献求助10
3秒前
五十一笑声应助沈星燃采纳,获得10
3秒前
6秒前
sharkboy完成签到,获得积分10
7秒前
tuanzi完成签到 ,获得积分10
7秒前
情怀应助Ruogu采纳,获得10
7秒前
7秒前
hqh完成签到,获得积分10
8秒前
8秒前
小六完成签到,获得积分10
9秒前
9秒前
阿拉完成签到,获得积分10
11秒前
顾矜应助想发SCI采纳,获得10
11秒前
hqh发布了新的文献求助10
12秒前
WFLLL发布了新的文献求助10
13秒前
lily完成签到,获得积分10
13秒前
14秒前
14秒前
香蕉雨安发布了新的文献求助10
14秒前
友好若南发布了新的文献求助10
15秒前
15秒前
15秒前
包容的剑发布了新的文献求助10
16秒前
didiidid关注了科研通微信公众号
17秒前
17秒前
纸飞机发布了新的文献求助10
18秒前
迷路诗云发布了新的文献求助10
18秒前
19秒前
19秒前
科研靓仔发布了新的文献求助10
20秒前
斯文败类应助启点采纳,获得10
21秒前
Ruogu发布了新的文献求助10
21秒前
犬狗狗发布了新的文献求助10
21秒前
大橙子完成签到,获得积分10
22秒前
Gentlegirl发布了新的文献求助10
23秒前
llj发布了新的文献求助10
23秒前
小雨治大水关注了科研通微信公众号
23秒前
熹微发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146215
求助须知:如何正确求助?哪些是违规求助? 2797572
关于积分的说明 7824769
捐赠科研通 2453955
什么是DOI,文献DOI怎么找? 1305932
科研通“疑难数据库(出版商)”最低求助积分说明 627616
版权声明 601503