RFL-CDNet: Towards Accurate Change Detection via Richer Feature Learning

变更检测 人工智能 特征(语言学) 模式识别(心理学) 计算机科学 机器学习 哲学 语言学
作者
Yuhang Gan,Wenjie Xuan,Hang Chen,Juhua Liu,Bo Du
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110515-110515
标识
DOI:10.1016/j.patcog.2024.110515
摘要

Change Detection is a crucial but extremely challenging task of remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods mainly focus on intricate feature extraction and multi-scale feature fusion, while ignoring the insufficient utilization of features in the intermediate stages, thus resulting in sub-optimal results. To this end, we propose a novel framework, named RFL-CDNet, that utilizes richer feature learning to boost change detection performance. Specifically, we first introduce deep multiple supervision to enhance intermediate representations, thus unleashing the potential of backbone feature extractor at each stage. Furthermore, we design the Coarse-To-Fine Guiding (C2FG) module and the Learnable Fusion (LF) module to further improve feature learning and obtain more discriminative feature representations. The C2FG module aims to seamlessly integrate the side prediction from previous coarse-scale into the current fine-scale prediction in a coarse-to-fine manner, while LF module assumes that the contribution of each stage and each spatial location is independent, thus designing a learnable module to fuse multiple predictions. Experiments on several benchmark datasets show that our proposed RFL-CDNet achieves state-of-the-art performance on WHU cultivated land dataset and CDD dataset, and the second best performance on WHU building dataset. The source code and models are publicly available at https://github.com/Hhaizee/RFL-CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
胖虎发布了新的文献求助10
1秒前
aaaa发布了新的文献求助10
1秒前
给我好好读书完成签到,获得积分10
2秒前
iiiiiimax完成签到,获得积分10
2秒前
清风徐来完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
day_on发布了新的文献求助10
3秒前
ding应助船夫采纳,获得10
3秒前
无花果应助waterimagic2采纳,获得10
4秒前
脑洞疼应助Skuld采纳,获得10
4秒前
漾漾发布了新的文献求助20
4秒前
6秒前
乐乐应助奶冻采纳,获得10
6秒前
wangwangdui发布了新的文献求助10
6秒前
清风徐来发布了新的文献求助10
6秒前
aaaa完成签到,获得积分10
7秒前
7秒前
7秒前
rum发布了新的文献求助10
8秒前
醉爱星星完成签到,获得积分10
8秒前
研友_8yN60L发布了新的文献求助10
8秒前
SciGPT应助suki采纳,获得30
8秒前
续集发布了新的文献求助10
8秒前
9秒前
heaven发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
Xiaolingsmiling给Xiaolingsmiling的求助进行了留言
11秒前
爆米花应助我不会采纳,获得10
11秒前
完美世界应助纸鸢采纳,获得10
11秒前
Suen发布了新的文献求助10
12秒前
勤奋一刀发布了新的文献求助10
12秒前
12秒前
tagate完成签到,获得积分10
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642