A Dynamical Systems View of Psychiatric Disorders—Theory

精神科 心理学 医学
作者
Marten Scheffer,Claudi Bockting,Denny Borsboom,Roshan Cools,Clara Delecroix,Jessica Hartmann,Kenneth S. Kendler,Ingrid van de Leemput,Han L. J. van der Maas,Egbert H. van Nes,Mark P. Mattson,Patrick D. McGorry,Barnaby Nelson
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:81 (6): 618-618 被引量:49
标识
DOI:10.1001/jamapsychiatry.2024.0215
摘要

Importance Psychiatric disorders may come and go with symptoms changing over a lifetime. This suggests the need for a paradigm shift in diagnosis and treatment. Here we present a fresh look inspired by dynamical systems theory. This theory is used widely to explain tipping points, cycles, and chaos in complex systems ranging from the climate to ecosystems. Observations In the dynamical systems view, we propose the healthy state has a basin of attraction representing its resilience, while disorders are alternative attractors in which the system can become trapped. Rather than an immutable trait, resilience in this approach is a dynamical property. Recent work has demonstrated the universality of generic dynamical indicators of resilience that are now employed globally to monitor the risks of collapse of complex systems, such as tropical rainforests and tipping elements of the climate system. Other dynamical systems tools are used in ecology and climate science to infer causality from time series. Moreover, experiences in ecological restoration confirm the theoretical prediction that under some conditions, short interventions may invoke long-term success when they flip the system into an alternative basin of attraction. All this implies practical applications for psychiatry, as are discussed in part 2 of this article. Conclusions and Relevance Work in the field of dynamical systems points to novel ways of inferring causality and quantifying resilience from time series. Those approaches have now been tried and tested in a range of complex systems. The same tools may help monitoring and managing resilience of the healthy state as well as psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助xx采纳,获得10
刚刚
俊俏的紫菜应助qiu采纳,获得80
刚刚
可可发布了新的文献求助10
刚刚
汪锦程发布了新的文献求助10
1秒前
小Y应助Firenze采纳,获得10
1秒前
Orange应助Firenze采纳,获得10
1秒前
1秒前
2秒前
xrr完成签到,获得积分10
2秒前
chenchenchen发布了新的文献求助10
3秒前
夏天完成签到,获得积分10
3秒前
英俊的铭应助万事顺意采纳,获得10
3秒前
Ava应助ferry123采纳,获得10
3秒前
瞌瞌完成签到,获得积分10
3秒前
lalaland完成签到,获得积分10
4秒前
4秒前
爱笑的香寒完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
LXY完成签到,获得积分10
5秒前
空白完成签到,获得积分10
5秒前
浊酒完成签到,获得积分20
6秒前
7秒前
yezhi完成签到,获得积分10
7秒前
Owen应助孙伟健采纳,获得10
7秒前
科研通AI6应助哭泣的灵寒采纳,获得10
7秒前
小白完成签到,获得积分10
8秒前
8秒前
怡然的梦之完成签到,获得积分10
8秒前
好想吃豆腐脑完成签到,获得积分10
9秒前
深情安青应助ww采纳,获得10
9秒前
9秒前
画画完成签到,获得积分20
9秒前
小马甲应助快乐乐松采纳,获得10
9秒前
小叮当完成签到,获得积分10
10秒前
土星发布了新的文献求助10
10秒前
SciGPT应助黎黎采纳,获得10
10秒前
hyh发布了新的文献求助10
11秒前
renwoxing完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586