A Dynamical Systems View of Psychiatric Disorders—Theory

精神科 心理学 医学
作者
Marten Scheffer,Claudi Bockting,Denny Borsboom,Roshan Cools,Clara Delecroix,Jessica Hartmann,Kenneth S. Kendler,Ingrid van de Leemput,Han L. J. van der Maas,Egbert H. van Nes,Mark P. Mattson,Patrick D. McGorry,Barnaby Nelson
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:81 (6): 618-618 被引量:49
标识
DOI:10.1001/jamapsychiatry.2024.0215
摘要

Importance Psychiatric disorders may come and go with symptoms changing over a lifetime. This suggests the need for a paradigm shift in diagnosis and treatment. Here we present a fresh look inspired by dynamical systems theory. This theory is used widely to explain tipping points, cycles, and chaos in complex systems ranging from the climate to ecosystems. Observations In the dynamical systems view, we propose the healthy state has a basin of attraction representing its resilience, while disorders are alternative attractors in which the system can become trapped. Rather than an immutable trait, resilience in this approach is a dynamical property. Recent work has demonstrated the universality of generic dynamical indicators of resilience that are now employed globally to monitor the risks of collapse of complex systems, such as tropical rainforests and tipping elements of the climate system. Other dynamical systems tools are used in ecology and climate science to infer causality from time series. Moreover, experiences in ecological restoration confirm the theoretical prediction that under some conditions, short interventions may invoke long-term success when they flip the system into an alternative basin of attraction. All this implies practical applications for psychiatry, as are discussed in part 2 of this article. Conclusions and Relevance Work in the field of dynamical systems points to novel ways of inferring causality and quantifying resilience from time series. Those approaches have now been tried and tested in a range of complex systems. The same tools may help monitoring and managing resilience of the healthy state as well as psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助想要毕业采纳,获得10
刚刚
张生娣发布了新的文献求助30
1秒前
1秒前
爆米花应助乌漆嘛黑采纳,获得100
1秒前
罗兴鲜发布了新的文献求助10
2秒前
y741应助呆萌的小刺猬采纳,获得20
2秒前
勤劳的斑马发布了新的文献求助200
2秒前
2秒前
kolico完成签到,获得积分10
2秒前
科研通AI6应助芝士学报采纳,获得30
2秒前
Domo完成签到 ,获得积分10
3秒前
dong发布了新的文献求助10
3秒前
情怀应助LIU采纳,获得20
3秒前
LYL完成签到,获得积分10
3秒前
Ava应助木头采纳,获得10
3秒前
Enso发布了新的文献求助10
4秒前
李健的小迷弟应助flyabc采纳,获得10
4秒前
浮游应助淡然寄瑶采纳,获得10
4秒前
ewfr发布了新的文献求助10
5秒前
SciGPT应助Jankin采纳,获得10
5秒前
丘比特应助西洲采纳,获得10
5秒前
5秒前
5秒前
6秒前
大个应助彼岸采纳,获得10
6秒前
666发布了新的文献求助10
6秒前
7秒前
ZDM6094完成签到 ,获得积分10
7秒前
在水一方应助啊懂采纳,获得10
7秒前
善学以致用应助lchoxy采纳,获得10
7秒前
echo发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
lulufighting完成签到,获得积分10
8秒前
26937635完成签到,获得积分10
9秒前
DPH完成签到 ,获得积分10
10秒前
张雯雯发布了新的文献求助10
10秒前
缙云山2020发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853