PRERISK: A Personalized, Artificial Intelligence–Based and Statistically—Based Stroke Recurrence Predictor for Recurrent Stroke

医学 冲程(发动机) 接收机工作特性 血脂异常 心房颤动 体质指数 糖尿病 物理疗法 比例危险模型 内科学 急诊医学 肥胖 工程类 内分泌学 机械工程
作者
G. Colangelo,Marc Ribó,Estefanía Montiel,Didier Domínguez,Marta Olivé‐Gadea,Marián Muchada,Álvaro García‐Tornel,Manuel Requena,Jorge Pagola,Jesús Juega,David Rodríguez‐Luna,Noelia Rodríguez‐Villatoro,Federica Rizzo,Belén Taborda,Carlos A. Molina,Marta Rubiera
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (5): 1200-1209 被引量:1
标识
DOI:10.1161/strokeaha.123.043691
摘要

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
吼吼应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
吼吼应助科研通管家采纳,获得10
1秒前
寻道图强应助科研通管家采纳,获得50
1秒前
ding应助科研通管家采纳,获得10
1秒前
Verity应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
吼吼应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Junning应助科研通管家采纳,获得100
2秒前
w1kend发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
ssuoi完成签到,获得积分10
2秒前
思源应助luo采纳,获得10
2秒前
佳雯发布了新的文献求助10
2秒前
slz发布了新的文献求助10
3秒前
十二码前的沉思完成签到,获得积分10
3秒前
5秒前
闫素肃发布了新的文献求助10
5秒前
Nofear发布了新的文献求助10
6秒前
8秒前
徐新雨发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779