重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

PRERISK: A Personalized, Artificial Intelligence–Based and Statistically—Based Stroke Recurrence Predictor for Recurrent Stroke

医学 冲程(发动机) 接收机工作特性 血脂异常 心房颤动 体质指数 糖尿病 物理疗法 比例危险模型 内科学 急诊医学 肥胖 工程类 内分泌学 机械工程
作者
G. Colangelo,Marc Ribó,Estefanía Montiel,Didier Domínguez,Marta Olivé‐Gadea,Marián Muchada,Álvaro García‐Tornel,Manuel Requena,Jorge Pagola,Jesús Juega,David Rodríguez‐Luna,Noelia Rodríguez‐Villatoro,Federica Rizzo,Belén Taborda,Carlos A. Molina,Marta Rubiera
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (5): 1200-1209 被引量:1
标识
DOI:10.1161/strokeaha.123.043691
摘要

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dw发布了新的文献求助10
刚刚
刚刚
深情安青应助Des采纳,获得10
刚刚
Orange应助A晨采纳,获得10
刚刚
刚刚
自由青完成签到,获得积分20
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
脑洞疼应助热情的戾采纳,获得10
1秒前
Enso发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
李佳烨发布了新的文献求助10
1秒前
耶啵完成签到,获得积分10
1秒前
duming完成签到,获得积分10
1秒前
852应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
Shirley完成签到,获得积分10
2秒前
李健应助科研通管家采纳,获得10
2秒前
拂晨柳絮发布了新的文献求助10
2秒前
2秒前
温暖达完成签到,获得积分10
2秒前
景易完成签到,获得积分10
2秒前
善学以致用应助阿强采纳,获得30
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
着急的小蘑菇完成签到,获得积分10
3秒前
斧王应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
3秒前
wangchiyi发布了新的文献求助10
3秒前
个性跳跳糖完成签到,获得积分10
3秒前
3秒前
xuxuxuxu完成签到 ,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590