PRERISK: A Personalized, Artificial Intelligence–Based and Statistically—Based Stroke Recurrence Predictor for Recurrent Stroke

医学 冲程(发动机) 接收机工作特性 血脂异常 心房颤动 体质指数 糖尿病 物理疗法 比例危险模型 内科学 急诊医学 肥胖 机械工程 工程类 内分泌学
作者
G. Colangelo,Marc Ribó,Estefanía Montiel,Didier Domínguez,Marta Olivé‐Gadea,Marián Muchada,Álvaro García‐Tornel,Manuel Requena,Jorge Pagola,Jesús Juega,David Rodríguez‐Luna,Noelia Rodríguez‐Villatoro,Federica Rizzo,Belén Taborda,Carlos A. Molina,Marta Rubiera
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (5): 1200-1209 被引量:1
标识
DOI:10.1161/strokeaha.123.043691
摘要

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助范峰源采纳,获得10
1秒前
和褪黑素说晚安完成签到 ,获得积分10
1秒前
兰佳璇完成签到,获得积分10
1秒前
Catherine_Song完成签到,获得积分10
2秒前
2秒前
3秒前
hyx发布了新的文献求助10
3秒前
123study0完成签到,获得积分10
3秒前
hxldsb发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助yaa采纳,获得10
4秒前
5秒前
清瑜完成签到,获得积分10
5秒前
Agoni完成签到,获得积分10
7秒前
wg发布了新的文献求助10
7秒前
llf完成签到,获得积分10
7秒前
math发布了新的文献求助10
7秒前
zheng完成签到,获得积分10
7秒前
8秒前
Hilda007应助Catherine_Song采纳,获得10
8秒前
9秒前
9秒前
hxldsb完成签到,获得积分10
9秒前
浮游应助展锋采纳,获得10
10秒前
10秒前
10秒前
不是飞凡老师应助yar采纳,获得200
10秒前
BINGBING1230发布了新的文献求助10
11秒前
细心采蓝发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
amanda应助song跳跳采纳,获得20
13秒前
shuhe完成签到,获得积分10
13秒前
wg完成签到,获得积分10
13秒前
id完成签到,获得积分10
13秒前
14秒前
14秒前
黎明之光发布了新的文献求助20
14秒前
DouBo发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308276
求助须知:如何正确求助?哪些是违规求助? 4453483
关于积分的说明 13857227
捐赠科研通 4341210
什么是DOI,文献DOI怎么找? 2383705
邀请新用户注册赠送积分活动 1378353
关于科研通互助平台的介绍 1346311