PRERISK: A Personalized, Artificial Intelligence–Based and Statistically—Based Stroke Recurrence Predictor for Recurrent Stroke

医学 冲程(发动机) 接收机工作特性 血脂异常 心房颤动 体质指数 糖尿病 物理疗法 比例危险模型 内科学 急诊医学 肥胖 机械工程 工程类 内分泌学
作者
G. Colangelo,Marc Ribó,Estefanía Montiel,Didier Domínguez,Marta Olivé‐Gadea,Marián Muchada,Álvaro García‐Tornel,Manuel Requena,Jorge Pagola,Jesús Juega,David Rodríguez‐Luna,Noelia Rodríguez‐Villatoro,Federica Rizzo,Belén Taborda,Carlos A. Molina,Marta Rubiera
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:55 (5): 1200-1209 被引量:1
标识
DOI:10.1161/strokeaha.123.043691
摘要

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助wang采纳,获得10
刚刚
shilong.yang完成签到,获得积分10
1秒前
Dobrzs发布了新的文献求助10
1秒前
1秒前
所所应助唠叨的又菡采纳,获得10
2秒前
3秒前
ggxhygr发布了新的文献求助10
3秒前
田田田发布了新的文献求助10
4秒前
4秒前
董春伟应助ll采纳,获得10
4秒前
zyf完成签到,获得积分10
5秒前
yuyukeke发布了新的文献求助10
5秒前
孙大大关注了科研通微信公众号
5秒前
米团发布了新的文献求助10
6秒前
6秒前
czqjlu完成签到,获得积分10
6秒前
若非菜孰愿弟完成签到,获得积分10
6秒前
1235完成签到,获得积分10
7秒前
咕噜完成签到 ,获得积分10
7秒前
8秒前
浮游应助Mydddg采纳,获得15
8秒前
Hello应助吸墨采纳,获得10
8秒前
8秒前
lv发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
爱笑访文应助张宇琪采纳,获得10
10秒前
Freedom发布了新的文献求助10
11秒前
12秒前
小倪发布了新的文献求助10
12秒前
12秒前
13秒前
琪凯定理发布了新的文献求助10
13秒前
14秒前
xyt625发布了新的文献求助10
14秒前
无花果应助应寒年采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970