PRERISK: A Personalized, Artificial Intelligence–Based and Statistically—Based Stroke Recurrence Predictor for Recurrent Stroke

医学 冲程(发动机) 接收机工作特性 血脂异常 心房颤动 体质指数 糖尿病 物理疗法 比例危险模型 内科学 急诊医学 肥胖 工程类 内分泌学 机械工程
作者
G. Colangelo,Marc Ribó,Estefanía Montiel,Didier Domínguez,Marta Olivé‐Gadea,Marián Muchada,Álvaro García‐Tornel,Manuel Requena,Jorge Pagola,Jesús Juega,David Rodríguez‐Luna,Noelia Rodríguez‐Villatoro,Federica Rizzo,Belén Taborda,Carlos A. Molina,Marta Rubiera
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (5): 1200-1209 被引量:1
标识
DOI:10.1161/strokeaha.123.043691
摘要

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达如松发布了新的文献求助10
刚刚
WNL发布了新的文献求助10
刚刚
坚强水杯发布了新的文献求助60
1秒前
3秒前
善学以致用应助oue采纳,获得10
3秒前
3秒前
3秒前
HCT完成签到,获得积分10
4秒前
4秒前
4秒前
limerence发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助玥越采纳,获得10
5秒前
1chen完成签到 ,获得积分10
5秒前
6秒前
刘霆勋发布了新的文献求助10
6秒前
哪位完成签到,获得积分10
6秒前
风吹麦田应助fish采纳,获得100
7秒前
fnuew发布了新的文献求助10
7秒前
JIANGSHUI发布了新的文献求助10
8秒前
林深完成签到,获得积分10
8秒前
风清扬发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
山雷发布了新的文献求助10
8秒前
Sylvia完成签到,获得积分10
9秒前
struggle完成签到,获得积分20
9秒前
科研小尹发布了新的文献求助10
9秒前
齐天大圣完成签到,获得积分10
10秒前
禹宛白发布了新的文献求助10
10秒前
jhonnyhuang发布了新的文献求助10
11秒前
11秒前
JIANGSHUI完成签到,获得积分10
12秒前
万金油完成签到 ,获得积分10
12秒前
老王爱学习完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802