PhosAF: An integrated deep learning architecture for predicting protein phosphorylation sites with AlphaFold2 predicted structures

深度学习 磷酸化 卷积神经网络 计算机科学 人工智能 序列(生物学) 人工神经网络 蛋白质磷酸化 构造(python库) 计算生物学 机器学习 生物 生物化学 蛋白激酶A 程序设计语言
作者
Ziyuan Yu,Jialin Yu,Hongmei Wang,Shuai Zhang,Long Zhao,Shaoping Shi
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:690: 115510-115510 被引量:4
标识
DOI:10.1016/j.ab.2024.115510
摘要

Phosphorylation is indispensable in comprehending biological processes, while biological experimental methods for identifying phosphorylation sites are tedious and arduous. With the rapid growth of biotechnology, deep learning methods have made significant progress in site prediction tasks. Nevertheless, most existing predictors only consider protein sequence information, that limits the capture of protein spatial information. Building upon the latest advancement in protein structure prediction by AlphaFold2, a novel integrated deep learning architecture PhosAF is developed to predict phosphorylation sites in human proteins by integrating CMA-Net and MFC-Net, which considers sequence and structure information predicted by AlphaFold2. Here, CMA-Net module is composed of multiple convolutional neural network layers and multi-head attention is appended to obtaining the local and long-term dependencies of sequence features. Meanwhile, the MFC-Net module composed of deep neural network layers is used to capture the complex representations of evolutionary and structure features. Furthermore, different features are combined to predict the final phosphorylation sites. In addition, we put forward a new strategy to construct reliable negative samples via protein secondary structures. Experimental results on independent test data and case study indicate that our model PhosAF surpasses the current most advanced methods in phosphorylation site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
娜娜发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
4秒前
王www发布了新的文献求助10
6秒前
7秒前
沙世平完成签到,获得积分10
7秒前
小h发布了新的文献求助20
9秒前
10秒前
11秒前
12秒前
飞飞发布了新的文献求助10
14秒前
16秒前
学术不难发布了新的文献求助30
16秒前
17秒前
丘比特应助猪猪hero采纳,获得10
17秒前
21秒前
23秒前
席河木鱼发布了新的文献求助10
25秒前
淡定小白菜完成签到,获得积分10
25秒前
朝朝发布了新的文献求助10
28秒前
28秒前
29秒前
麦苗果果发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
王www完成签到,获得积分10
31秒前
31秒前
1751587229发布了新的文献求助10
32秒前
tao完成签到 ,获得积分10
33秒前
孙皮皮完成签到 ,获得积分10
34秒前
猪猪hero发布了新的文献求助10
35秒前
泡面完成签到 ,获得积分10
36秒前
彭于彦祖应助刘玉采纳,获得30
36秒前
大模型应助席河木鱼采纳,获得10
37秒前
热心市民小红花应助骑骑采纳,获得10
37秒前
chy发布了新的文献求助10
37秒前
bxyyy应助雪山飞龙采纳,获得10
40秒前
爆米花应助Alina1874采纳,获得10
40秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824