亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PhosAF: An integrated deep learning architecture for predicting protein phosphorylation sites with AlphaFold2 predicted structures

深度学习 磷酸化 卷积神经网络 计算机科学 人工智能 序列(生物学) 人工神经网络 蛋白质磷酸化 构造(python库) 计算生物学 机器学习 生物 生物化学 蛋白激酶A 程序设计语言
作者
Ziyuan Yu,Jialin Yu,Hongmei Wang,Shuai Zhang,Long Zhao,Shaoping Shi
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:690: 115510-115510 被引量:4
标识
DOI:10.1016/j.ab.2024.115510
摘要

Phosphorylation is indispensable in comprehending biological processes, while biological experimental methods for identifying phosphorylation sites are tedious and arduous. With the rapid growth of biotechnology, deep learning methods have made significant progress in site prediction tasks. Nevertheless, most existing predictors only consider protein sequence information, that limits the capture of protein spatial information. Building upon the latest advancement in protein structure prediction by AlphaFold2, a novel integrated deep learning architecture PhosAF is developed to predict phosphorylation sites in human proteins by integrating CMA-Net and MFC-Net, which considers sequence and structure information predicted by AlphaFold2. Here, CMA-Net module is composed of multiple convolutional neural network layers and multi-head attention is appended to obtaining the local and long-term dependencies of sequence features. Meanwhile, the MFC-Net module composed of deep neural network layers is used to capture the complex representations of evolutionary and structure features. Furthermore, different features are combined to predict the final phosphorylation sites. In addition, we put forward a new strategy to construct reliable negative samples via protein secondary structures. Experimental results on independent test data and case study indicate that our model PhosAF surpasses the current most advanced methods in phosphorylation site prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杰尼龟的鱼完成签到 ,获得积分10
16秒前
shhoing应助科研通管家采纳,获得10
38秒前
shhoing应助科研通管家采纳,获得10
38秒前
43秒前
上官若男应助羟基磷酸钙采纳,获得10
1分钟前
alter_mu完成签到,获得积分10
1分钟前
2分钟前
2分钟前
大胆的音响完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
AllIN发布了新的文献求助10
2分钟前
羟基磷酸钙完成签到 ,获得积分10
2分钟前
wanci应助Trip_wyb采纳,获得10
2分钟前
在水一方应助AllIN采纳,获得10
3分钟前
3分钟前
Trip_wyb发布了新的文献求助10
3分钟前
小欧完成签到 ,获得积分10
3分钟前
能干的荆完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助Li采纳,获得10
4分钟前
5分钟前
范ER完成签到 ,获得积分10
5分钟前
科研通AI2S应助Li采纳,获得10
6分钟前
慕青应助aki采纳,获得10
6分钟前
6分钟前
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
故意的小萱完成签到,获得积分20
7分钟前
科研通AI2S应助Li采纳,获得10
7分钟前
瑾瑜玉完成签到 ,获得积分10
8分钟前
FashionBoy应助NatureEnergy采纳,获得30
8分钟前
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
ataybabdallah完成签到,获得积分10
8分钟前
新秀微博发布了新的文献求助10
8分钟前
9分钟前
NatureEnergy发布了新的文献求助30
9分钟前
NatureEnergy完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558531
求助须知:如何正确求助?哪些是违规求助? 4643615
关于积分的说明 14671260
捐赠科研通 4584933
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459992