MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications

全局优化 烧蚀 工程类 计算机科学 航空航天工程 系统工程 数学优化 气象学 数学 地理 算法
作者
Yaning Xiao,Hao Cui,Abdelazim G. Hussien,Fatma A. Hashim
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102464-102464 被引量:34
标识
DOI:10.1016/j.aei.2024.102464
摘要

Snow Ablation Optimizer (SAO) is a cutting-edge nature-inspired meta-heuristic technique that mimics the sublimation and melting processes of snow in its quest for optimal solution to complex problems. While SAO has demonstrated competitive performance in comparison to classical algorithms in early research, it still exhibits certain limitations including low convergence accuracy, a lack of population diversity, and premature convergence, particularly when addressing high-dimensional intricate challenges. To mitigate the above-mentioned adverse factors, this paper introduces a novel variant of SAO with featuring four enhancement strategies collectively referred as MSAO. Firstly, the good point set initialization strategy is employed to generate a uniformly distributed high-quality population, which facilitates the algorithm to enter the appropriate search domain rapidly. Secondly, the greedy selection method is adopted to reserve better candidate solutions for the next iteration, thus striking a robust exploration–exploitation balance. Then, the Differential Evolution (DE) scheme is introduced to expand the search range and enhance the exploitation capability of the algorithm for higher convergence accuracy. Finally, to reduce the risk of falling into local optima, a Dynamic Lens Opposition-Based Learning (DLOBL) strategy is developed to operate on the current optimal solution dimension by dimension. With the blessing of these strategies, the optimization performance of MSAO is comprehensively improved. To comprehensively evaluate the optimization performance of MSAO, a series of numerical optimization experiments are conducted using the IEEE CEC2017 & CEC2022 test sets. In the IEEE CEC2017 experiments, the optimal crossover probability CR=0.8 is determined and the effectiveness of each improvement strategy is ablatively verified. MSAO is compared with the basic SAO, various state-of-the-art optimizers, and CEC2017 champion algorithms in terms of solution accuracy, convergence speed, robustness, and scalability. In the IEEE CEC2022 experiments, MSAO is compared with some recently developed improved algorithms to further validate its superiority. The results demonstrate that MSAO has excellent overall optimization performance, with the smallest Friedman mean rankings of 1.66 and 1.25 on both test suites, respectively. In the majority of test cases, MSAO can provide more accurate and reliable solutions than other competitors. Furthermore, six realistic constrained engineering design challenges and one photovoltaic model parameter estimation issue are employed to demonstrate the practicality of MSAO. Our findings suggest that MSAO has excellent optimization capacity and broad application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
香蕉觅云应助郝56采纳,获得10
1秒前
渐变映射发布了新的文献求助10
1秒前
2秒前
2秒前
青椒超人发布了新的文献求助10
3秒前
zzzzzzz发布了新的文献求助10
3秒前
MM关闭了MM文献求助
4秒前
古德方发布了新的文献求助10
4秒前
4秒前
失眠台灯完成签到,获得积分20
4秒前
shengshiyu完成签到,获得积分10
4秒前
彭于晏应助自由的白开水采纳,获得10
6秒前
dzl发布了新的文献求助10
7秒前
小马完成签到,获得积分20
7秒前
NATURECATCHER发布了新的文献求助10
7秒前
陈科研完成签到,获得积分10
7秒前
Ava应助糟糕的铁锤采纳,获得10
8秒前
Zyl完成签到 ,获得积分10
8秒前
9秒前
852应助杨迪楠采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
Akim应助念安采纳,获得10
11秒前
12秒前
youda完成签到 ,获得积分10
12秒前
乐乐应助满意小丸子采纳,获得10
12秒前
12秒前
13秒前
13秒前
yang发布了新的文献求助10
13秒前
大模型应助Herry-Jeremy采纳,获得10
13秒前
斯文败类应助牧瞻采纳,获得10
14秒前
KaleighCarlos发布了新的文献求助10
14秒前
xxx发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148