MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications

全局优化 烧蚀 工程类 计算机科学 航空航天工程 系统工程 数学优化 气象学 数学 地理 算法
作者
Yaning Xiao,Hao Cui,Abdelazim G. Hussien,Fatma A. Hashim
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102464-102464 被引量:5
标识
DOI:10.1016/j.aei.2024.102464
摘要

Snow Ablation Optimizer (SAO) is a cutting-edge nature-inspired meta-heuristic technique that mimics the sublimation and melting processes of snow in its quest for optimal solution to complex problems. While SAO has demonstrated competitive performance in comparison to classical algorithms in early research, it still exhibits certain limitations including low convergence accuracy, a lack of population diversity, and premature convergence, particularly when addressing high-dimensional intricate challenges. To mitigate the above-mentioned adverse factors, this paper introduces a novel variant of SAO with featuring four enhancement strategies collectively referred as MSAO. Firstly, the good point set initialization strategy is employed to generate a uniformly distributed high-quality population, which facilitates the algorithm to enter the appropriate search domain rapidly. Secondly, the greedy selection method is adopted to reserve better candidate solutions for the next iteration, thus striking a robust exploration–exploitation balance. Then, the Differential Evolution (DE) scheme is introduced to expand the search range and enhance the exploitation capability of the algorithm for higher convergence accuracy. Finally, to reduce the risk of falling into local optima, a Dynamic Lens Opposition-Based Learning (DLOBL) strategy is developed to operate on the current optimal solution dimension by dimension. With the blessing of these strategies, the optimization performance of MSAO is comprehensively improved. To comprehensively evaluate the optimization performance of MSAO, a series of numerical optimization experiments are conducted using the IEEE CEC2017 & CEC2022 test sets. In the IEEE CEC2017 experiments, the optimal crossover probability CR=0.8 is determined and the effectiveness of each improvement strategy is ablatively verified. MSAO is compared with the basic SAO, various state-of-the-art optimizers, and CEC2017 champion algorithms in terms of solution accuracy, convergence speed, robustness, and scalability. In the IEEE CEC2022 experiments, MSAO is compared with some recently developed improved algorithms to further validate its superiority. The results demonstrate that MSAO has excellent overall optimization performance, with the smallest Friedman mean rankings of 1.66 and 1.25 on both test suites, respectively. In the majority of test cases, MSAO can provide more accurate and reliable solutions than other competitors. Furthermore, six realistic constrained engineering design challenges and one photovoltaic model parameter estimation issue are employed to demonstrate the practicality of MSAO. Our findings suggest that MSAO has excellent optimization capacity and broad application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼角流星发布了新的文献求助10
刚刚
nazar给nazar的求助进行了留言
1秒前
1秒前
1秒前
淡淡的素发布了新的文献求助10
2秒前
2秒前
Joey完成签到 ,获得积分10
3秒前
3秒前
jevon应助杜欢采纳,获得10
4秒前
pp发布了新的文献求助20
4秒前
clearlove完成签到,获得积分20
4秒前
DL发布了新的文献求助10
4秒前
醉熏的小土豆完成签到,获得积分10
5秒前
我不是一只羊关注了科研通微信公众号
5秒前
33关闭了33文献求助
5秒前
6秒前
研友_VZG7GZ应助霜沐采纳,获得35
7秒前
7秒前
7秒前
小迪真傻发布了新的文献求助10
7秒前
7秒前
8秒前
ephore应助你在说神马采纳,获得30
10秒前
陈宏宇发布了新的文献求助10
10秒前
11秒前
11秒前
花无双完成签到,获得积分0
11秒前
jimmyhui完成签到,获得积分10
12秒前
善学以致用应助xuqiansd采纳,获得10
12秒前
12秒前
一只废鼠发布了新的文献求助10
12秒前
13秒前
13秒前
liyuchen发布了新的文献求助10
13秒前
爆米花应助冬猫采纳,获得10
13秒前
14秒前
14秒前
万能图书馆应助元不二采纳,获得10
14秒前
百思发布了新的文献求助10
15秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218909
求助须知:如何正确求助?哪些是违规求助? 2867929
关于积分的说明 8158830
捐赠科研通 2534996
什么是DOI,文献DOI怎么找? 1367373
科研通“疑难数据库(出版商)”最低求助积分说明 645033
邀请新用户注册赠送积分活动 618223