A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping

动态时间归整 计算机科学 人工智能 深信不疑网络 循环神经网络 机器学习 深度学习 人工神经网络 分类 时间序列 模式识别(心理学) 特征(语言学) 背景(考古学) 数据挖掘 古生物学 语言学 哲学 生物
作者
Bishweshwar Babu,B. Sandhya
出处
期刊:MATEC web of conferences [EDP Sciences]
卷期号:392: 01161-01161
标识
DOI:10.1051/matecconf/202439201161
摘要

In the past ten years, data from time series extraction has attracted a lot of attention. Several methods have concentrated on classification problems, where the objective is to identify the labelling of a test period, given labelled training data. Feature-based and Instance-based methods are the two fundamental groups into which time series categorization methodologies may be divided. To categorize time series data, instance-based techniques use similarity data in a nearest-neighbor context. While methods in this category deliver reliable findings, their efficacy suffers when dealing with lengthy and noisy time series. Feature-based approaches, on the other together, extract characteristics to address the shortcomings of instance-based methods; nevertheless, these approaches use predetermined features and might not be effective in all classification issues. This paper seeks to introduce a novel deep learning-based Optimal Dynamic Time Warping (ODTW) paradigm for multimodal time’s series data categorization. This model covers several phases. At initial stage, the standard data is gathered from standard public source. Secondly, ODTW is proposed, where the parameters are optimized by Random Opposition Billiards-Inspired Optimization (RO-BIO) for extracting the most essential information. Finally, the classification is carried out through “Deep Belief Network (DBN) and Recurrent Neural Networks (RNN) termed as Deep Belief-RNN (DB-RNN)”. Finally, the extracted deep features are given to the optimized RNN for attaining the final classified results. The simulation results have resulted in superior classification performance in terms of standard performance measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EV完成签到,获得积分10
刚刚
蟹黄味发布了新的文献求助10
刚刚
清蒸鱼发布了新的文献求助30
刚刚
谨慎的白秋完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
zzx完成签到,获得积分10
1秒前
1秒前
1秒前
坚定的向雪完成签到,获得积分10
1秒前
自信雨安发布了新的文献求助10
2秒前
tang1发布了新的文献求助10
2秒前
3秒前
稳重口红发布了新的文献求助10
3秒前
欣欣向荣发布了新的文献求助10
4秒前
4秒前
义气丹雪应助李剑鸿采纳,获得100
4秒前
4秒前
ww发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助30
4秒前
小马甲应助王HH采纳,获得10
5秒前
小徐发布了新的文献求助10
5秒前
5秒前
5秒前
桐桐应助yong采纳,获得10
5秒前
wesley完成签到,获得积分10
5秒前
小马甲应助wzh1745采纳,获得10
5秒前
酷波er应助体贴薯片采纳,获得10
6秒前
6秒前
小珂完成签到 ,获得积分10
6秒前
耍酷的飞凤完成签到,获得积分10
6秒前
6秒前
zhjwu发布了新的文献求助10
7秒前
无情莫英完成签到,获得积分10
7秒前
miemiemie发布了新的文献求助10
7秒前
天天快乐应助阔达一寡采纳,获得10
7秒前
魔幻的小之完成签到,获得积分20
7秒前
629275发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807