A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping

动态时间归整 计算机科学 人工智能 深信不疑网络 循环神经网络 机器学习 深度学习 人工神经网络 分类 时间序列 模式识别(心理学) 特征(语言学) 背景(考古学) 数据挖掘 古生物学 语言学 哲学 生物
作者
Bishweshwar Babu,B. Sandhya
出处
期刊:MATEC web of conferences [EDP Sciences]
卷期号:392: 01161-01161
标识
DOI:10.1051/matecconf/202439201161
摘要

In the past ten years, data from time series extraction has attracted a lot of attention. Several methods have concentrated on classification problems, where the objective is to identify the labelling of a test period, given labelled training data. Feature-based and Instance-based methods are the two fundamental groups into which time series categorization methodologies may be divided. To categorize time series data, instance-based techniques use similarity data in a nearest-neighbor context. While methods in this category deliver reliable findings, their efficacy suffers when dealing with lengthy and noisy time series. Feature-based approaches, on the other together, extract characteristics to address the shortcomings of instance-based methods; nevertheless, these approaches use predetermined features and might not be effective in all classification issues. This paper seeks to introduce a novel deep learning-based Optimal Dynamic Time Warping (ODTW) paradigm for multimodal time’s series data categorization. This model covers several phases. At initial stage, the standard data is gathered from standard public source. Secondly, ODTW is proposed, where the parameters are optimized by Random Opposition Billiards-Inspired Optimization (RO-BIO) for extracting the most essential information. Finally, the classification is carried out through “Deep Belief Network (DBN) and Recurrent Neural Networks (RNN) termed as Deep Belief-RNN (DB-RNN)”. Finally, the extracted deep features are given to the optimized RNN for attaining the final classified results. The simulation results have resulted in superior classification performance in terms of standard performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大梦想家完成签到,获得积分10
1秒前
种喜欢的花完成签到 ,获得积分10
1秒前
Ellis发布了新的文献求助20
2秒前
ding应助徐嘿嘿采纳,获得10
2秒前
宋宋发布了新的文献求助10
4秒前
讷讷完成签到,获得积分10
4秒前
可爱的函函应助123采纳,获得10
4秒前
5秒前
tangz发布了新的文献求助10
9秒前
甲乙丙丁完成签到,获得积分10
9秒前
shihangZhang完成签到,获得积分10
10秒前
11秒前
歪歪完成签到,获得积分10
12秒前
zhaozhao完成签到,获得积分10
14秒前
15秒前
闪电侠完成签到 ,获得积分10
16秒前
顾矜应助木木林采纳,获得10
16秒前
Ning发布了新的文献求助10
17秒前
17秒前
小方发布了新的文献求助10
19秒前
英姑应助自觉的无声采纳,获得10
20秒前
20秒前
21秒前
爱学习的孩纸完成签到 ,获得积分10
22秒前
酷波er应助yuan466125789采纳,获得10
23秒前
Ning完成签到,获得积分10
23秒前
123完成签到,获得积分20
23秒前
24秒前
小蝶发布了新的文献求助10
25秒前
25秒前
赘婿应助甘地采纳,获得10
26秒前
114555完成签到,获得积分10
26秒前
小蘑菇应助娇气的雁兰采纳,获得10
26秒前
123发布了新的文献求助10
26秒前
28秒前
小方完成签到,获得积分10
29秒前
水冰月发布了新的文献求助10
29秒前
芋圆不圆发布了新的文献求助10
29秒前
赘婿应助健壮的语雪采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432