A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping

动态时间归整 计算机科学 人工智能 深信不疑网络 循环神经网络 机器学习 深度学习 人工神经网络 分类 时间序列 模式识别(心理学) 特征(语言学) 背景(考古学) 数据挖掘 古生物学 语言学 哲学 生物
作者
Bishweshwar Babu,B. Sandhya
出处
期刊:MATEC web of conferences [EDP Sciences]
卷期号:392: 01161-01161
标识
DOI:10.1051/matecconf/202439201161
摘要

In the past ten years, data from time series extraction has attracted a lot of attention. Several methods have concentrated on classification problems, where the objective is to identify the labelling of a test period, given labelled training data. Feature-based and Instance-based methods are the two fundamental groups into which time series categorization methodologies may be divided. To categorize time series data, instance-based techniques use similarity data in a nearest-neighbor context. While methods in this category deliver reliable findings, their efficacy suffers when dealing with lengthy and noisy time series. Feature-based approaches, on the other together, extract characteristics to address the shortcomings of instance-based methods; nevertheless, these approaches use predetermined features and might not be effective in all classification issues. This paper seeks to introduce a novel deep learning-based Optimal Dynamic Time Warping (ODTW) paradigm for multimodal time’s series data categorization. This model covers several phases. At initial stage, the standard data is gathered from standard public source. Secondly, ODTW is proposed, where the parameters are optimized by Random Opposition Billiards-Inspired Optimization (RO-BIO) for extracting the most essential information. Finally, the classification is carried out through “Deep Belief Network (DBN) and Recurrent Neural Networks (RNN) termed as Deep Belief-RNN (DB-RNN)”. Finally, the extracted deep features are given to the optimized RNN for attaining the final classified results. The simulation results have resulted in superior classification performance in terms of standard performance measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动刺猬完成签到,获得积分10
刚刚
苗浩阳发布了新的文献求助10
刚刚
可爱的函函应助qq采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
万能图书馆应助aa采纳,获得10
2秒前
雪花飞剪完成签到,获得积分10
2秒前
2秒前
小明发布了新的文献求助10
3秒前
3秒前
QZR完成签到,获得积分10
3秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
4秒前
5秒前
aojl90完成签到,获得积分10
5秒前
6秒前
开心的一一完成签到,获得积分10
6秒前
三笠完成签到,获得积分10
6秒前
dwx0529发布了新的文献求助10
7秒前
8秒前
喜悦音响完成签到,获得积分20
8秒前
8秒前
你好完成签到,获得积分10
9秒前
隐形曼青应助qazwsx采纳,获得10
10秒前
Lucas应助可乐掺红酒采纳,获得10
11秒前
AN关闭了AN文献求助
12秒前
12秒前
12秒前
yy发布了新的文献求助10
13秒前
畅畅发布了新的文献求助10
13秒前
snow1109完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
huihuia完成签到,获得积分10
15秒前
美好斓发布了新的文献求助10
15秒前
aa完成签到,获得积分10
15秒前
蘇q完成签到 ,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771127
求助须知:如何正确求助?哪些是违规求助? 5589626
关于积分的说明 15426564
捐赠科研通 4904445
什么是DOI,文献DOI怎么找? 2638788
邀请新用户注册赠送积分活动 1586567
关于科研通互助平台的介绍 1541713