清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping

动态时间归整 计算机科学 人工智能 深信不疑网络 循环神经网络 机器学习 深度学习 人工神经网络 分类 时间序列 模式识别(心理学) 特征(语言学) 背景(考古学) 数据挖掘 古生物学 语言学 哲学 生物
作者
Bishweshwar Babu,B. Sandhya
出处
期刊:MATEC web of conferences [EDP Sciences]
卷期号:392: 01161-01161
标识
DOI:10.1051/matecconf/202439201161
摘要

In the past ten years, data from time series extraction has attracted a lot of attention. Several methods have concentrated on classification problems, where the objective is to identify the labelling of a test period, given labelled training data. Feature-based and Instance-based methods are the two fundamental groups into which time series categorization methodologies may be divided. To categorize time series data, instance-based techniques use similarity data in a nearest-neighbor context. While methods in this category deliver reliable findings, their efficacy suffers when dealing with lengthy and noisy time series. Feature-based approaches, on the other together, extract characteristics to address the shortcomings of instance-based methods; nevertheless, these approaches use predetermined features and might not be effective in all classification issues. This paper seeks to introduce a novel deep learning-based Optimal Dynamic Time Warping (ODTW) paradigm for multimodal time’s series data categorization. This model covers several phases. At initial stage, the standard data is gathered from standard public source. Secondly, ODTW is proposed, where the parameters are optimized by Random Opposition Billiards-Inspired Optimization (RO-BIO) for extracting the most essential information. Finally, the classification is carried out through “Deep Belief Network (DBN) and Recurrent Neural Networks (RNN) termed as Deep Belief-RNN (DB-RNN)”. Finally, the extracted deep features are given to the optimized RNN for attaining the final classified results. The simulation results have resulted in superior classification performance in terms of standard performance measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
8秒前
20秒前
EKKOO发布了新的文献求助10
26秒前
汉堡包应助samsahpiyaz采纳,获得10
28秒前
EKKOO完成签到,获得积分20
32秒前
39秒前
samsahpiyaz发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
51秒前
Criminology34应助白华苍松采纳,获得10
1分钟前
zzhui完成签到,获得积分10
1分钟前
1分钟前
烂漫念文发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
烂漫念文完成签到,获得积分10
2分钟前
翁雁丝完成签到 ,获得积分10
2分钟前
charih完成签到 ,获得积分10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
无极微光应助白华苍松采纳,获得20
4分钟前
合适黑米完成签到,获得积分10
4分钟前
4分钟前
合适黑米发布了新的文献求助10
4分钟前
sduweiyu完成签到 ,获得积分10
4分钟前
lizi完成签到,获得积分10
5分钟前
5分钟前
无极微光应助白华苍松采纳,获得20
5分钟前
合适黑米发布了新的文献求助10
5分钟前
minnie完成签到 ,获得积分10
5分钟前
DX120210165完成签到,获得积分10
5分钟前
zyjsunye完成签到 ,获得积分10
6分钟前
6分钟前
大喜喜发布了新的文献求助30
6分钟前
air-yi完成签到,获得积分0
6分钟前
al完成签到 ,获得积分0
6分钟前
顾矜应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
LINDENG2004完成签到 ,获得积分10
8分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614358
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531