A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping

动态时间归整 计算机科学 人工智能 深信不疑网络 循环神经网络 机器学习 深度学习 人工神经网络 分类 时间序列 模式识别(心理学) 特征(语言学) 背景(考古学) 数据挖掘 古生物学 语言学 哲学 生物
作者
Bishweshwar Babu,B. Sandhya
出处
期刊:MATEC web of conferences [EDP Sciences]
卷期号:392: 01161-01161
标识
DOI:10.1051/matecconf/202439201161
摘要

In the past ten years, data from time series extraction has attracted a lot of attention. Several methods have concentrated on classification problems, where the objective is to identify the labelling of a test period, given labelled training data. Feature-based and Instance-based methods are the two fundamental groups into which time series categorization methodologies may be divided. To categorize time series data, instance-based techniques use similarity data in a nearest-neighbor context. While methods in this category deliver reliable findings, their efficacy suffers when dealing with lengthy and noisy time series. Feature-based approaches, on the other together, extract characteristics to address the shortcomings of instance-based methods; nevertheless, these approaches use predetermined features and might not be effective in all classification issues. This paper seeks to introduce a novel deep learning-based Optimal Dynamic Time Warping (ODTW) paradigm for multimodal time’s series data categorization. This model covers several phases. At initial stage, the standard data is gathered from standard public source. Secondly, ODTW is proposed, where the parameters are optimized by Random Opposition Billiards-Inspired Optimization (RO-BIO) for extracting the most essential information. Finally, the classification is carried out through “Deep Belief Network (DBN) and Recurrent Neural Networks (RNN) termed as Deep Belief-RNN (DB-RNN)”. Finally, the extracted deep features are given to the optimized RNN for attaining the final classified results. The simulation results have resulted in superior classification performance in terms of standard performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助wtg采纳,获得10
1秒前
3秒前
稳重银耳汤完成签到,获得积分20
7秒前
8秒前
8秒前
共享精神应助ZLY采纳,获得10
9秒前
tuanheqi应助王也采纳,获得80
10秒前
追寻的可仁完成签到,获得积分10
10秒前
mulidexin2021发布了新的文献求助10
12秒前
Jasper应助恶恶么v采纳,获得10
15秒前
冰激凌的迎彤完成签到,获得积分10
17秒前
Lucifer完成签到,获得积分10
19秒前
嘿嘿完成签到,获得积分10
19秒前
23xyke完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
Qn完成签到,获得积分10
22秒前
win发布了新的文献求助30
26秒前
dichloro完成签到,获得积分10
27秒前
Qn发布了新的文献求助10
28秒前
chen完成签到,获得积分10
28秒前
贤惠的白开水完成签到 ,获得积分10
29秒前
LL完成签到,获得积分10
30秒前
花的微笑完成签到,获得积分10
31秒前
mzc完成签到 ,获得积分10
31秒前
pan完成签到 ,获得积分10
32秒前
Orange应助满意非笑采纳,获得10
33秒前
掉渣的饼干完成签到,获得积分10
33秒前
科研通AI2S应助慕梦安采纳,获得10
41秒前
BBB完成签到,获得积分10
43秒前
win完成签到,获得积分20
43秒前
隐形曼青应助努力毕业、采纳,获得10
48秒前
zjf完成签到,获得积分10
48秒前
搜集达人应助浏阳河采纳,获得10
48秒前
49秒前
互助遵法尚德应助墨墨采纳,获得10
49秒前
JxJ完成签到,获得积分10
49秒前
所所应助123采纳,获得10
50秒前
53秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905