Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence

生成模型 计算机科学 合成数据 髓系白血病 临床试验 人工智能 生成语法 医学 内科学
作者
Jan-Niklas Eckardt,Waldemar Hahn,Christoph Röllig,Sebastian Stasik,Uwe Platzbecker,Carsten Müller‐Tidow,Hubert Serve,Claudia D. Baldus,Christoph Schliemann,Kerstin Schäfer‐Eckart,Maher Hanoun,Martin Kaufmann,Andreas Burchert,Martin Bornhäuser,Johannes Schetelig,Martin Sedlmayr,Martin Bornhäuser,Markus Wolfien,Jan Moritz Middeke
出处
期刊:npj digital medicine [Springer Nature]
卷期号:7 (1) 被引量:8
标识
DOI:10.1038/s41746-024-01076-x
摘要

Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds the promise of effectively bypassing these boundaries allowing for simplified data accessibility and the prospect of synthetic control cohorts. We employed two different methodologies of generative artificial intelligence - CTAB-GAN+ and normalizing flows (NFlow) - to synthesize patient data derived from 1606 patients with acute myeloid leukemia, a heterogeneous hematological malignancy, that were treated within four multicenter clinical trials. Both generative models accurately captured distributions of demographic, laboratory, molecular and cytogenetic variables, as well as patient outcomes yielding high performance scores regarding fidelity and usability of both synthetic cohorts (n = 1606 each). Survival analysis demonstrated close resemblance of survival curves between original and synthetic cohorts. Inter-variable relationships were preserved in univariable outcome analysis enabling explorative analysis in our synthetic data. Additionally, training sample privacy is safeguarded mitigating possible patient re-identification, which we quantified using Hamming distances. We provide not only a proof-of-concept for synthetic data generation in multimodal clinical data for rare diseases, but also full public access to synthetic data sets to foster further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lio完成签到,获得积分20
1秒前
1秒前
FashionBoy应助汤浩宏采纳,获得10
2秒前
wjwless完成签到,获得积分10
3秒前
稀罕你发布了新的文献求助10
3秒前
圣晟胜发布了新的文献求助10
3秒前
寒冷半雪完成签到,获得积分10
7秒前
善良易文发布了新的文献求助10
7秒前
orixero应助GXY采纳,获得30
7秒前
香蕉不言发布了新的文献求助10
7秒前
迅速海云发布了新的文献求助10
8秒前
xiamovivi完成签到,获得积分10
9秒前
bitahu完成签到,获得积分20
9秒前
路边一颗小草完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
乐乐应助勤劳落雁采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
852应助独特亦旋采纳,获得10
11秒前
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
清秀灵薇完成签到,获得积分10
13秒前
超哥完成签到,获得积分10
13秒前
14秒前
bkagyin应助TT采纳,获得10
14秒前
一只科研pig完成签到 ,获得积分10
14秒前
oliver501发布了新的文献求助10
15秒前
18秒前
19秒前
科研路上的干饭桶完成签到,获得积分10
19秒前
所所应助YYJ25采纳,获得10
19秒前
传奇3应助ubiqutin采纳,获得10
20秒前
Wiggins完成签到,获得积分10
20秒前
adi完成签到,获得积分10
20秒前
小马甲应助猫了个喵采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849