Dynamic sensing and control system using artificial intelligent techniques for non-uniform indoor environment

室内空气质量 通风(建筑) 计算机科学 自然通风 能源消耗 热舒适性 无线 模拟 环境科学 实时计算 汽车工程 工程类 环境工程 电信 电气工程 物理 热力学 机械工程
作者
Hao-Cheng Zhu,Chen Ren,Shi-Jie Cao
出处
期刊:Building and Environment [Elsevier]
卷期号:226: 109702-109702 被引量:17
标识
DOI:10.1016/j.buildenv.2022.109702
摘要

Traditional ventilation systems have difficulty in effectively capture the dynamic and non-uniform distribution of the indoor environment, making it difficult to meet the dynamic demand of the indoor environment in real time for regulation and control. This results in a large amount of energy being wasted, and the comfort of indoor personnel is not guaranteed. Microsensors are used to monitor the air quality of the indoor environment for responding to the indoor environmental conditions and providing real-time regulation of the indoor ventilation system. However, monitoring by a single microsensor alone does not reflect the global indoor environment and can easily lead to non-uniform distribution of indoor environment and thermal discomfort for personnel. Excessive sensors can lead to wasted resources and inconvenient space in the room. Therefore, this research developed dynamic ventilation control system based on “limited monitoring - fast prediction - real-time control” method. The system realized online transmission and reception of indoor environment monitoring data through wireless communication technology. Combined with fast prediction model to obtain the optimal air changes per hour (ACH) value of indoor environment, it can help realize the real-time regulation and intelligent control of indoor ventilation system, further promoting a balance between the energy consumption and indoor environmental quality (up to 60% ventilation energy savings). This work can provide important strategies and technologies for the construction and implementation for intelligent ventilation control systems. • Coupling dynamic control method and ventilation system design aiming for indoor air pollution prediction and online control. • A new intelligent dynamic ventilation system based on an embedded system and software design. • LLVM-based ANN applied for real time indoor environment prediction, with the maximal error of 12%. • A significant guidance provided for the development and application of intelligent ventilation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助nao1314采纳,获得10
刚刚
田様应助激动的新筠采纳,获得10
1秒前
1秒前
Bing发布了新的文献求助10
2秒前
星辰大海应助有毒的羊采纳,获得10
2秒前
ggggggg发布了新的文献求助10
2秒前
2秒前
Qianbaor应助tony采纳,获得10
2秒前
连糜完成签到 ,获得积分10
3秒前
耍酷千山发布了新的文献求助10
4秒前
4秒前
眯眯眼的衬衫应助wjx采纳,获得10
5秒前
眯眯眼的衬衫应助wjx采纳,获得10
5秒前
SYLH应助wjx采纳,获得10
5秒前
英姑应助wjx采纳,获得10
5秒前
jyy应助wjx采纳,获得10
5秒前
reflux应助wjx采纳,获得10
5秒前
科研通AI2S应助wjx采纳,获得10
5秒前
Hello应助wjx采纳,获得10
5秒前
wanci应助wjx采纳,获得10
5秒前
紫云兔子完成签到,获得积分10
5秒前
5秒前
6秒前
俊秀的芫发布了新的文献求助10
6秒前
taxuefree完成签到,获得积分20
7秒前
情怀应助hearz采纳,获得10
7秒前
7秒前
xingyue关注了科研通微信公众号
8秒前
科研通AI5应助ggggggg采纳,获得10
8秒前
Zyk发布了新的文献求助10
9秒前
搜集达人应助耍酷千山采纳,获得10
9秒前
9秒前
Qianbaor应助俊秀的芫采纳,获得30
10秒前
小马甲应助俊秀的芫采纳,获得10
10秒前
叽里呱啦发布了新的文献求助10
11秒前
lxy完成签到,获得积分20
12秒前
13秒前
廖佰城发布了新的文献求助10
13秒前
13秒前
鹅鹅鹅完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542538
求助须知:如何正确求助?哪些是违规求助? 3119878
关于积分的说明 9340920
捐赠科研通 2817961
什么是DOI,文献DOI怎么找? 1549251
邀请新用户注册赠送积分活动 722060
科研通“疑难数据库(出版商)”最低求助积分说明 712928