亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization

代谢物 非负矩阵分解 计算机科学 编码器 模式识别(心理学) 人工智能 特征向量 矩阵分解 特征(语言学) 数据挖掘 机器学习 计算生物学 生物 生物化学 物理 操作系统 哲学 量子力学 特征向量 语言学
作者
Hongtao Gao,Jianqiang Sun,Yukun Wang,Yuer Lu,Liyu Liu,Qi Zhao,Jianwei Shuai
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:72
标识
DOI:10.1093/bib/bbad259
摘要

Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助thousandlong采纳,获得10
7秒前
13秒前
thousandlong发布了新的文献求助10
17秒前
Luis应助科研通管家采纳,获得10
38秒前
CLAYmore完成签到,获得积分10
48秒前
49秒前
49秒前
CLAYmore发布了新的文献求助10
54秒前
58秒前
scl发布了新的文献求助10
1分钟前
scl完成签到,获得积分10
1分钟前
1分钟前
K2发布了新的文献求助10
1分钟前
一路微笑完成签到,获得积分10
2分钟前
韩保晨完成签到 ,获得积分10
2分钟前
专注半烟完成签到 ,获得积分10
2分钟前
痴情的蒙蒙完成签到 ,获得积分10
2分钟前
3分钟前
李爱国应助Mia采纳,获得10
3分钟前
batmanrobin完成签到,获得积分10
3分钟前
3分钟前
4分钟前
小马甲应助thousandlong采纳,获得10
4分钟前
Luis应助科研通管家采纳,获得10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
4分钟前
thousandlong发布了新的文献求助10
4分钟前
一只鱼完成签到,获得积分10
5分钟前
6分钟前
静静完成签到 ,获得积分10
6分钟前
6分钟前
wannada发布了新的文献求助10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
Luis应助科研通管家采纳,获得10
6分钟前
希望天下0贩的0应助wannada采纳,获得10
6分钟前
qiu完成签到,获得积分10
7分钟前
研友_VZG7GZ应助学术混子采纳,获得10
7分钟前
pcr163应助有人采纳,获得50
7分钟前
科研通AI2S应助动人的书雪采纳,获得10
7分钟前
7分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068088
求助须知:如何正确求助?哪些是违规求助? 2722059
关于积分的说明 7476002
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256150
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596815