亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autonomous target tracking of multi-UAV: A two-stage deep reinforcement learning approach with expert experience

强化学习 计算机科学 人工智能 机器学习 趋同(经济学) 跟踪(教育) 领域(数学) 障碍物 心理学 政治学 教育学 数学 经济增长 经济 法学 纯数学
作者
Jiahua Wang,Ping Zhang,Yan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:145: 110604-110604
标识
DOI:10.1016/j.asoc.2023.110604
摘要

In recent years, deep reinforcement learning (DRL) has developed rapidly and has been applied to multi-UAV target tracking (MTT) research. However, DRL still faces challenges in data utilization and learning speed. To better solve the above problems, a novel two-stage DRL-based multi-UAV decision-making method is proposed in this paper. Specifically, a sample generator combining artificial potential field with proportional–integral–derivative is used to produce expert experience data. On this basis, a two-stage reinforcement learning training method is introduced. For the first stage, the policy network and critic network are pre-trained using expert data, combined with behavior cloning loss and additional Q-value loss, which reduces ineffective exploration and speeds up learning. For the second RL stage, by calculating the average return of the last recent k excellent episodes, the excellent experience generated by the agent itself is screened out and used to guide the policy network to choose the actions with high reward, thus improving the efficiency of data utilization. Extensive simulation experiments show that our method not only enables multi-UAV to continuously track the target in obstacle environments but also significantly improves the learning speed and convergence effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifei0729完成签到,获得积分20
1秒前
momi发布了新的文献求助10
1秒前
养乐多敬你完成签到 ,获得积分10
2秒前
YJL完成签到 ,获得积分10
5秒前
6秒前
nhzz2023完成签到 ,获得积分0
8秒前
哈基米难背绿豆完成签到,获得积分20
8秒前
今后应助momi采纳,获得10
8秒前
11秒前
123456发布了新的文献求助10
12秒前
cyanpomelo完成签到,获得积分10
16秒前
教生物的杨教授完成签到,获得积分10
17秒前
17秒前
无语的巨人完成签到 ,获得积分10
21秒前
Ava应助111222333采纳,获得30
23秒前
26秒前
KY2022完成签到,获得积分10
29秒前
sadascaqwqw发布了新的文献求助10
31秒前
小秃子完成签到,获得积分10
34秒前
于yu完成签到 ,获得积分10
40秒前
40秒前
善良的灵羊完成签到 ,获得积分10
41秒前
貔貅完成签到,获得积分10
41秒前
45秒前
Criminology34举报wshyzhxxxn求助涉嫌违规
46秒前
sxmt123456789发布了新的文献求助30
46秒前
Nick_YFWS完成签到,获得积分10
46秒前
48秒前
天之道完成签到,获得积分10
48秒前
默笙完成签到 ,获得积分10
50秒前
天之道发布了新的文献求助10
50秒前
51秒前
51秒前
完美世界应助yinshan采纳,获得10
51秒前
依桉完成签到 ,获得积分10
52秒前
刚少kk完成签到,获得积分10
52秒前
英俊的铭应助天之道采纳,获得10
57秒前
Owen应助VDC采纳,获得10
57秒前
nn应助sxmt123456789采纳,获得10
58秒前
卷卷应助sxmt123456789采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599