Autonomous target tracking of multi-UAV: A two-stage deep reinforcement learning approach with expert experience

强化学习 计算机科学 人工智能 机器学习 趋同(经济学) 跟踪(教育) 领域(数学) 障碍物 心理学 政治学 教育学 数学 经济增长 经济 法学 纯数学
作者
Jiahua Wang,Ping Zhang,Yang Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:145: 110604-110604 被引量:26
标识
DOI:10.1016/j.asoc.2023.110604
摘要

In recent years, deep reinforcement learning (DRL) has developed rapidly and has been applied to multi-UAV target tracking (MTT) research. However, DRL still faces challenges in data utilization and learning speed. To better solve the above problems, a novel two-stage DRL-based multi-UAV decision-making method is proposed in this paper. Specifically, a sample generator combining artificial potential field with proportional–integral–derivative is used to produce expert experience data. On this basis, a two-stage reinforcement learning training method is introduced. For the first stage, the policy network and critic network are pre-trained using expert data, combined with behavior cloning loss and additional Q-value loss, which reduces ineffective exploration and speeds up learning. For the second RL stage, by calculating the average return of the last recent k excellent episodes, the excellent experience generated by the agent itself is screened out and used to guide the policy network to choose the actions with high reward, thus improving the efficiency of data utilization. Extensive simulation experiments show that our method not only enables multi-UAV to continuously track the target in obstacle environments but also significantly improves the learning speed and convergence effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老龙发布了新的文献求助10
2秒前
传奇3应助刘钊扬采纳,获得10
3秒前
小萌新完成签到,获得积分10
3秒前
咯咚发布了新的文献求助10
3秒前
3秒前
科研通AI6应助xuan采纳,获得80
4秒前
nwds发布了新的文献求助10
4秒前
4秒前
xiaoxiao关注了科研通微信公众号
4秒前
4秒前
bzlish发布了新的文献求助10
5秒前
汉堡包应助zzx采纳,获得10
5秒前
求助文献完成签到,获得积分20
6秒前
mark完成签到,获得积分10
6秒前
酷波er应助甜甜醉波采纳,获得10
7秒前
烟花应助陈志强采纳,获得10
7秒前
7秒前
洪晖阳完成签到,获得积分10
8秒前
莫筱铭发布了新的文献求助10
8秒前
momeak发布了新的文献求助10
9秒前
Akim应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
123应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
汤飞飞完成签到,获得积分10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
123应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
欢呼乘风应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
123应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858