Bi2Se3-Based Memristive Devices for Neuromorphic Processing of Analogue Video Signals

神经形态工程学 记忆电阻器 计算机科学 可扩展性 材料科学 电子工程 人工神经网络 人工智能 工程类 数据库
作者
Mingze Chen,Seung Jun Ki,Xiaogan Liang
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:5 (7): 3830-3842 被引量:10
标识
DOI:10.1021/acsaelm.3c00544
摘要

Bismuth selenide (Bi2Se3), a layered semiconductor, has attracted a great deal of attention as a thermoelectric material as well as a potential topological insulator. Here, we present a work showing that Bi2Se3 can also be used for making memristive devices capable of directly processing analog video signals. In this work, Bi2Se3 memristors are produced by multiplexing rubbing-induced site-selective growth, which potentially enables scalable implementation of such memristor arrays for constructing large-scale neuromorphic systems. The fabricated Bi2Se3 memristors exhibit prominent memristive switching characteristics under the application of time-sequential voltage pulses. Especially, such a Bi2Se3 memristor exhibits a reliable dependence of memristive responses on the duty cycle of programming pulses, fast recovery behavior from a dynamically modulated state, and a large drive current. These properties could be employed for extracting spatiotemporal information from analogue signals and realizing practical neuromorphic sensory functions. Our additional tests strongly imply that the memristive output of a Bi2Se3 memristor in response to analogue video scanline signals could be implemented to construct future hardware-based computer vision systems capable of rapidly acquiring graphic information and directly actuating robotic systems with minimal data transmission and energy consumption. Finally, we attribute the observed memristive characteristics to field-mediated drift and diffusion of the selenium vacancies in the Bi2Se3 layers. The simulated memristive response based on this hypothesis model is consistent with the experimental result. This work provides a potentially upscalable device solution to realize memristor-based neuromorphic sensory or edge computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seanfly发布了新的文献求助10
1秒前
Finen发布了新的文献求助10
1秒前
曹毅凯完成签到,获得积分10
1秒前
lcr发布了新的文献求助15
2秒前
3秒前
帅气灯泡完成签到,获得积分10
3秒前
5秒前
FashionBoy应助HesperLxy采纳,获得10
9秒前
longyuyan完成签到,获得积分10
9秒前
10秒前
斯文败类应助落后凝莲采纳,获得10
11秒前
快乐的寄容完成签到 ,获得积分10
13秒前
夏侯夏侯发布了新的文献求助10
15秒前
小二郎应助舒服的嚓茶采纳,获得10
16秒前
SHANSHAN完成签到 ,获得积分10
17秒前
18秒前
脑洞疼应助聪明的千青采纳,获得10
19秒前
共享精神应助盘子采纳,获得10
19秒前
20秒前
Finen完成签到,获得积分10
20秒前
HesperLxy发布了新的文献求助10
21秒前
21秒前
linkage完成签到,获得积分20
21秒前
21秒前
likever22026应助AWESOME Ling采纳,获得10
22秒前
洋了个洋发布了新的文献求助10
23秒前
23秒前
Joye发布了新的文献求助10
25秒前
赘婿应助YAgT采纳,获得10
25秒前
李爱国应助维尼采纳,获得10
25秒前
无风发布了新的文献求助10
27秒前
SciGPT应助洋了个洋采纳,获得10
27秒前
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
29秒前
31秒前
勤恳小丸子完成签到,获得积分20
31秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874771
求助须知:如何正确求助?哪些是违规求助? 6510312
关于积分的说明 15675067
捐赠科研通 4992331
什么是DOI,文献DOI怎么找? 2691088
邀请新用户注册赠送积分活动 1633512
关于科研通互助平台的介绍 1591166