Integrated failure analysis using machine learning predictive system for smart management of medical equipment maintenance

计算机科学 预测性维护 机器学习 超参数 人工神经网络 人工智能 决策树 医疗设备 分类器(UML) 可靠性工程 工程类 医学 护理部
作者
Aizat Hilmi Zamzam,Khairunnisa Hasikin‬,Ahmad Khairi Abdul Wahab
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106715-106715 被引量:11
标识
DOI:10.1016/j.engappai.2023.106715
摘要

The study aims to develop the failure analysis predictive models, which prognosticate first failure event (FFE), failure-to-year ratio (FYR), and failure rectification group (FRG). The construction of predictive models involved nineteen categories of 13,350 units of medical equipment. We proposed thirteen novel features in assessing medical equipment failures. The failure analysis predictive models were categorised into several classes for training and testing the developed models. There was seven supervised machine learning classifiers and performance metrics applied in the experiment. The experiment demonstrates that Support Vector Machine is the best classifier for the FFE predictive model, which achieves an accuracy of 96.9% after hyperparameter optimisation. Furthermore, Decision Tree is the best classifier for FYR, with an accuracy of 83.9%. Meanwhile, the comparative analysis for FRG discovered that Artificial Neural Network achieved the highest accuracy among others with 76.7% accuracy after the hyperparameter optimisation process. Findings from this study indicate that this failure analysis predictive model functions as a main instrument for conducting predictive maintenance in the direction of smart maintenance practices. Through the developed predictive systems, timely maintenance of medical equipment can be performed. This will also assist healthcare service providers in initiating the remanufacturing and refurbishment programme, ensuring efficient medical care delivery. The suggested framework of machine learning-assisted failure analysis for medical equipment maintenance management may provide clinical engineers with guidance for managing the strategic maintenance management for medical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex关注了科研通微信公众号
1秒前
乐观小之应助黄的宝采纳,获得10
1秒前
2秒前
fzzf发布了新的文献求助10
2秒前
赘婿应助ents采纳,获得10
3秒前
王大D发布了新的文献求助10
4秒前
传奇3应助司空豁采纳,获得10
4秒前
4秒前
TT发布了新的文献求助30
5秒前
Shiku完成签到,获得积分10
6秒前
搞怪从菡完成签到,获得积分10
6秒前
求助发布了新的文献求助10
7秒前
酷酷以松发布了新的文献求助10
8秒前
还我益达发布了新的文献求助10
8秒前
所所应助楠12采纳,获得10
9秒前
搞怪从菡发布了新的文献求助10
10秒前
隐形曼青应助FAN采纳,获得30
10秒前
情怀应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
睡觉觉关注了科研通微信公众号
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
千跃应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得30
13秒前
yookia应助科研通管家采纳,获得40
13秒前
Akim应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
小白应助科研通管家采纳,获得20
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
一点通发布了新的文献求助10
13秒前
13秒前
Akim应助科研通管家采纳,获得30
13秒前
沛沛发布了新的文献求助10
13秒前
14秒前
Possession发布了新的文献求助10
14秒前
诺诺完成签到 ,获得积分10
14秒前
Dding发布了新的文献求助20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105