已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 物理 量子力学 经济 课程 宏观经济学
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (9): 1129-1140 被引量:2
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
hob发布了新的文献求助10
6秒前
whisper发布了新的文献求助10
7秒前
李健应助刻苦的雨莲采纳,获得30
10秒前
炸鸡叔发布了新的文献求助50
15秒前
15秒前
三三发布了新的文献求助10
18秒前
科研小马关注了科研通微信公众号
19秒前
19秒前
共享精神应助初余采纳,获得10
21秒前
发发完成签到,获得积分20
21秒前
whisper完成签到,获得积分10
22秒前
顺利毕业就好完成签到 ,获得积分10
23秒前
CipherSage应助赵三岁采纳,获得10
23秒前
温柔从凝完成签到 ,获得积分10
23秒前
万类霜天竞自由完成签到,获得积分10
25秒前
wax关闭了wax文献求助
25秒前
落后的听双完成签到 ,获得积分10
25秒前
27秒前
老实觅松完成签到 ,获得积分10
29秒前
花怜完成签到 ,获得积分10
30秒前
wr发布了新的文献求助10
33秒前
我是老大应助初学者采纳,获得10
33秒前
天使的诱惑913完成签到 ,获得积分10
35秒前
38秒前
40秒前
初余发布了新的文献求助10
41秒前
慕知完成签到 ,获得积分10
41秒前
44秒前
wr完成签到,获得积分10
46秒前
47秒前
CipherSage应助初余采纳,获得10
48秒前
49秒前
赵三岁发布了新的文献求助10
50秒前
syjssxwz完成签到,获得积分10
50秒前
51秒前
song完成签到,获得积分20
52秒前
科研通AI2S应助zzz采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753446
求助须知:如何正确求助?哪些是违规求助? 3297096
关于积分的说明 10097237
捐赠科研通 3011786
什么是DOI,文献DOI怎么找? 1654224
邀请新用户注册赠送积分活动 788654
科研通“疑难数据库(出版商)”最低求助积分说明 752962