Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 课程 量子力学 物理 宏观经济学 经济
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (9): 1129-1140 被引量:4
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芬达完成签到 ,获得积分10
1秒前
yangminghan发布了新的文献求助10
1秒前
蜂蜜小熊完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
清脆的巧凡应助Dawn采纳,获得20
5秒前
5秒前
田様应助今夜不设防采纳,获得10
5秒前
华仔应助Nikko采纳,获得10
5秒前
我是老大应助Brain采纳,获得10
7秒前
星辰大海应助KKKpumc采纳,获得10
7秒前
至乐无乐完成签到 ,获得积分10
8秒前
xinglonglin完成签到,获得积分10
8秒前
Yep0672发布了新的文献求助10
9秒前
9秒前
Vera完成签到,获得积分10
10秒前
酷波er应助龙仔采纳,获得10
10秒前
10秒前
共享精神应助123采纳,获得10
10秒前
11秒前
11秒前
夜倾心完成签到,获得积分10
11秒前
Lychee完成签到 ,获得积分10
12秒前
杜本内完成签到,获得积分10
12秒前
13秒前
13秒前
yangminghan完成签到,获得积分10
14秒前
jiakai完成签到,获得积分10
16秒前
capitalist发布了新的文献求助10
16秒前
争取不秃顶的医学僧完成签到,获得积分10
16秒前
16秒前
lelele发布了新的文献求助10
16秒前
周少发布了新的文献求助10
17秒前
17秒前
17秒前
Brain发布了新的文献求助10
19秒前
华仔应助白桃味的夏采纳,获得10
20秒前
Singularity应助林林采纳,获得10
20秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975953
求助须知:如何正确求助?哪些是违规求助? 3520269
关于积分的说明 11201866
捐赠科研通 3256738
什么是DOI,文献DOI怎么找? 1798436
邀请新用户注册赠送积分活动 877578
科研通“疑难数据库(出版商)”最低求助积分说明 806464