Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 课程 量子力学 物理 宏观经济学 经济
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (9): 1129-1140 被引量:2
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZORROR发布了新的文献求助10
1秒前
无奈的山雁完成签到,获得积分10
1秒前
光亮丹琴发布了新的文献求助10
1秒前
嘉心糖应助难过小天鹅采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
ysib完成签到,获得积分10
3秒前
活力小鸽子完成签到,获得积分10
4秒前
我是老大应助QMZ采纳,获得10
4秒前
4秒前
5秒前
好困应助皮皮采纳,获得10
5秒前
丰富的高山完成签到,获得积分10
6秒前
lx发布了新的文献求助10
6秒前
JS完成签到,获得积分10
6秒前
zer发布了新的文献求助10
6秒前
YL应助夏林采纳,获得20
7秒前
7秒前
不是叶子发布了新的文献求助10
8秒前
8秒前
snow发布了新的文献求助10
8秒前
8秒前
ssyhlth关注了科研通微信公众号
9秒前
看风景悠然在路完成签到,获得积分10
9秒前
闪闪的梦柏完成签到 ,获得积分10
10秒前
科研通AI2S应助快乐棒棒糖采纳,获得10
11秒前
Zyk完成签到,获得积分10
11秒前
顺心曼雁完成签到 ,获得积分10
11秒前
随机昵称发布了新的文献求助10
11秒前
iuyol发布了新的文献求助10
11秒前
ktk发布了新的文献求助10
11秒前
12秒前
CodeCraft应助Waqas采纳,获得10
12秒前
13秒前
13秒前
光亮笑蓝完成签到,获得积分10
13秒前
13秒前
Amelia完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168924
求助须知:如何正确求助?哪些是违规求助? 2820169
关于积分的说明 7929567
捐赠科研通 2480239
什么是DOI,文献DOI怎么找? 1321290
科研通“疑难数据库(出版商)”最低求助积分说明 633152
版权声明 602497