Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 课程 量子力学 物理 宏观经济学 经济
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (9): 1129-1140 被引量:4
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sean完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
deng发布了新的文献求助10
2秒前
潇洒天抒完成签到,获得积分20
2秒前
11111完成签到,获得积分10
2秒前
2秒前
雪落六年yyds完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
华仔应助海边打渔的樵夫采纳,获得30
5秒前
tracer发布了新的文献求助10
6秒前
小二郎应助潇洒天抒采纳,获得10
6秒前
6秒前
jinwuu发布了新的文献求助10
6秒前
李健的小迷弟应助ghytrfd采纳,获得10
7秒前
达达尼尔发布了新的文献求助10
7秒前
浮游应助十八鱼采纳,获得10
7秒前
彭于晏应助123采纳,获得10
7秒前
隐形曼青应助执着烧鹅采纳,获得10
7秒前
8秒前
8秒前
8秒前
才下眉头发布了新的文献求助10
9秒前
9秒前
健康的小鸽子完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
dominate完成签到,获得积分10
11秒前
qq158014169发布了新的文献求助10
11秒前
Zx_1993应助智慧吗喽采纳,获得20
11秒前
EliGolden完成签到,获得积分20
12秒前
周钰发布了新的文献求助10
12秒前
xiaotu发布了新的文献求助10
12秒前
Samuel_发布了新的文献求助10
12秒前
所所应助LC采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073933
求助须知:如何正确求助?哪些是违规求助? 4294077
关于积分的说明 13380382
捐赠科研通 4115460
什么是DOI,文献DOI怎么找? 2253658
邀请新用户注册赠送积分活动 1258414
关于科研通互助平台的介绍 1191257