Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 课程 量子力学 物理 宏观经济学 经济
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (9): 1129-1140 被引量:4
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光易真完成签到,获得积分10
刚刚
Owen应助刘嘻嘻采纳,获得10
刚刚
Ava应助东山采纳,获得10
1秒前
me应助梁燕采纳,获得10
1秒前
健壮的涑发布了新的文献求助20
1秒前
accept白完成签到,获得积分10
1秒前
单纯凝雁完成签到,获得积分10
1秒前
化学兔八哥完成签到,获得积分10
1秒前
2秒前
sparks发布了新的文献求助10
2秒前
2秒前
2秒前
hehe完成签到,获得积分10
3秒前
如意翡翠发布了新的文献求助10
3秒前
George完成签到,获得积分10
3秒前
3秒前
3秒前
yanning发布了新的文献求助10
4秒前
Fk发布了新的文献求助10
4秒前
4秒前
4秒前
accept白发布了新的文献求助10
4秒前
4秒前
苦学僧发布了新的文献求助10
4秒前
XHT完成签到,获得积分10
5秒前
5秒前
顺利毕业完成签到,获得积分10
5秒前
5秒前
半颗橙子完成签到 ,获得积分10
6秒前
哎呀发布了新的文献求助10
6秒前
nicole发布了新的文献求助10
7秒前
7秒前
喵喵完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
随风发布了新的文献求助10
9秒前
sunshine完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510567
求助须知:如何正确求助?哪些是违规求助? 4605250
关于积分的说明 14493621
捐赠科研通 4540414
什么是DOI,文献DOI怎么找? 2487980
邀请新用户注册赠送积分活动 1470238
关于科研通互助平台的介绍 1442645