亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 课程 量子力学 物理 宏观经济学 经济
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (9): 1129-1140 被引量:4
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助lvoov采纳,获得30
3秒前
叶95完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
香蕉觅云应助pojian采纳,获得10
12秒前
LIU完成签到 ,获得积分10
18秒前
18秒前
nihao完成签到 ,获得积分10
23秒前
星辰大海应助落寞代亦采纳,获得10
26秒前
Hello应助ZinyamHui采纳,获得10
29秒前
A2QD完成签到,获得积分10
29秒前
30秒前
Hello应助锂sdsa采纳,获得10
30秒前
32秒前
A2QD发布了新的文献求助10
33秒前
33秒前
三泥完成签到,获得积分10
38秒前
38秒前
pojian发布了新的文献求助10
39秒前
46秒前
默默善愁完成签到,获得积分10
48秒前
西湖醋鱼完成签到,获得积分10
50秒前
落寞代亦发布了新的文献求助10
51秒前
hugo完成签到,获得积分10
51秒前
周杰完成签到 ,获得积分10
53秒前
53秒前
53秒前
54秒前
55秒前
57秒前
阔达千萍完成签到 ,获得积分10
57秒前
归尘发布了新的文献求助10
59秒前
默默善愁发布了新的文献求助10
59秒前
害羞哈密瓜完成签到,获得积分10
1分钟前
1分钟前
昌莆完成签到 ,获得积分10
1分钟前
小马甲应助冷静机器猫采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432151
求助须知:如何正确求助?哪些是违规求助? 4544922
关于积分的说明 14194611
捐赠科研通 4464197
什么是DOI,文献DOI怎么找? 2447012
邀请新用户注册赠送积分活动 1438313
关于科研通互助平台的介绍 1415133