数据集
质量(理念)
数据质量
溶解度
集合(抽象数据类型)
数据挖掘
化学
估计
计算机科学
统计
生物系统
数学
生物
工程类
物理
有机化学
公制(单位)
运营管理
系统工程
量子力学
程序设计语言
作者
J Q Zhao,Eline Hermans,Kia Sepassi,Christophe Tistaert,Christel A. S. Bergström,Mazen Ahmad,Per Larsson
标识
DOI:10.1021/acs.molpharmaceut.4c00685
摘要
Aqueous solubility is one of the most important physicochemical properties of drug molecules and a major driving force for oral drug absorption. To date, the performance of in silico models for the estimation of solubility for novel chemical space is limited. To investigate possible reasons and remedies for this, the Johnson and Johnson in-house aqueous solubility data with over 40,000 compounds was leveraged. All data were generated through the same high-throughput assay, providing a unique opportunity to explore the relationship between data quality, quantity, and model estimations. Six intrinsic solubility data sets with different sizes and noise levels were generated by making use of three different approaches: (i) inclusion or exclusion of amorphous solid residue, (ii) measured or experimental log
科研通智能强力驱动
Strongly Powered by AbleSci AI