清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrated image-based deep learning and language models for primary diabetes care

医学 初级保健 介绍 糖尿病 糖尿病管理 经济短缺 家庭医学 2型糖尿病 语言学 内分泌学 哲学 政府(语言学)
作者
Jiajia Li,Zhouyu Guan,Li Wang,Carol Y. Cheung,Yingfeng Zheng,Lee‐Ling Lim,Cynthia Ciwei Lim,Paisan Ruamviboonsuk,Rajiv Raman,Leonor Corsino,Justin B. Echouffo‐Tcheugui,Andrea O. Y. Luk,Li Jia Chen,Xiaodong Sun,Haslina Hamzah,Qiang Wu,Xiangning Wang,Ruhan Liu,Ya Xing Wang,Ting‐Li Chen,Xiao Zhang,Xiaolong Yang,Jun Yin,Jing Wan,Du Wei,Ten Cheer Quek,Jocelyn Hui Lin Goh,Dawei Yang,Xiaoyan Hu,Truong Nguyen,Simon Szeto,Peranut Chotcomwongse,Rachid Malek,Nargiza Normatova,Nilufar Ibragimova,Ramyaa Srinivasan,Pingting Zhong,Wenyong Huang,Chenxin Deng,Lei Ruan,Cuntai Zhang,Chenxi Zhang,Yan Zhou,Chan Wu,Rongping Dai,Sky Wei Chee Koh,Adina Abdullah,Nicholas Ken Yoong Hee,Hong Chang Tan,Zhong Hong Liew,Carolyn Shan‐Yeu Tien,Shih Ling Kao,Amanda Yuan Ling Lim,Shao Feng Mok,Lina Sun,Jing Gu,Liang Wu,Tingyao Li,Di Cheng,Zheyuan Wang,Yiming Qin,Ling Dai,Ziyao Meng,Jia Shu,Yuwei Lu,Nan Jiang,Tingting Hu,Shan Huang,Gengyou Huang,Shujie Yu,Dan Liu,Weizhi Ma,Minyi Guo,Xinping Guan,Xiaokang Yang,Covadonga Bascarán,Charles R Cleland,Yuqian Bao,Elif I. Ekinci,Alicia J. Jenkins,Juliana C.N. Chan,Yong Mong Bee,Sobha Sivaprasad,Jonathan E. Shaw,Rafael Simó,Pearse A. Keane,Ching‐Yu Cheng,Gavin Siew Wei Tan,Weiping Jia,Yih‐Chung Tham,Huating Li,Bin Sheng,Tien Yin Wong
出处
期刊:Nature Medicine [Springer Nature]
被引量:7
标识
DOI:10.1038/s41591-024-03139-8
摘要

Abstract Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image–language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP’s accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm ( n = 397) with those under the PCP+DeepDR-LLM arm ( n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up ( P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals ( P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06发布了新的文献求助10
5秒前
9秒前
古芍昂完成签到 ,获得积分10
26秒前
45秒前
56秒前
1分钟前
鹤鸣发布了新的文献求助10
1分钟前
1分钟前
zai完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
陈无敌完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
刘贤华完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
offshore完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
绥生完成签到 ,获得积分10
6分钟前
6分钟前
鹤鸣发布了新的文献求助10
6分钟前
7分钟前
8分钟前
勤奋流沙完成签到 ,获得积分10
8分钟前
8分钟前
Sunny完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
俊逸吐司完成签到 ,获得积分10
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142