MultiLoRA: Multi-Directional Low Rank Adaptation for Multi-Domain Recommendation

域适应 计算机科学 适应(眼睛) 秩(图论) 领域(数学分析) 人工智能 数学 组合数学 物理 数学分析 分类器(UML) 光学
作者
Zijian Song,W. Y. Zhang,Lifang Deng,Jiandong Zhang,Kaigui Bian,Bin Cui
标识
DOI:10.1145/3627673.3679549
摘要

To address the business needs of industrial recommendation systems, an increasing number of Multi-Domain Recommendation (MDR) methods are designed to improve recommendation performance on multiple domains simultaneously. Most MDR methods follow a multi-task learning paradigm, suffering from poor deployability and negative transfer. Due to the great success of large pre-trained models, the pre-train & fine-tune paradigm is attracting increasing attention. The latest methods introduce parameter-efficient fine-tuning techniques like prompt-tuning, showcasing high efficiency and effectiveness. However, these methods neglect the fundamental differences between recommendation and NLP tasks. The inadequate capacity of recommendation models restricts the effectiveness of prompts and adapters. Worse still, traditional natural domain division may group non-identically distributed samples into the same domain, violating the assumption of independent and identically distributed (i.i.d.) data. In this paper, we propose MultiLoRA, a Multi-directional Low Rank Adaptation paradigm for multi-domain recommendation. First we pre-train a universal model using all data samples. Then we conduct multiple domain divisions on the sample space. Under each division, we fine-tune the pre-trained model to obtain a set of domain-specific LoRAs. Finally, we learn a LoRA fusion module to integrate domain-specific preference patterns across multiple divisions. Experimental results on real-world datasets demonstrate notable advantages of MultiLoRA: (1) achieving SOTA performance, (2) showcasing remarkable compatibility, and (3) proving highly efficient, featuring only 2% trainable parameters compared to the backbone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雷完成签到 ,获得积分10
刚刚
桐桐应助贺豪采纳,获得10
1秒前
Orange应助娇气的天亦采纳,获得10
1秒前
chenchen完成签到,获得积分10
2秒前
兔兔发布了新的文献求助10
2秒前
2秒前
3秒前
平常善若完成签到,获得积分10
3秒前
LL完成签到,获得积分20
3秒前
迟大猫应助houfengyun328采纳,获得10
3秒前
高贵绿真发布了新的文献求助10
4秒前
4秒前
瓜瓜乐完成签到,获得积分10
5秒前
5秒前
坚定的小蘑菇完成签到 ,获得积分10
5秒前
fff完成签到,获得积分10
5秒前
Master-wang完成签到,获得积分10
5秒前
小小想想完成签到,获得积分10
5秒前
6秒前
贺学习发布了新的文献求助10
6秒前
科研通AI5应助我是笨蛋采纳,获得10
6秒前
Agao完成签到 ,获得积分10
7秒前
冷酷锦程发布了新的文献求助10
8秒前
8秒前
代博士发布了新的文献求助10
8秒前
Akim应助dsv采纳,获得10
8秒前
小蘑菇应助Bink采纳,获得10
8秒前
晚湖完成签到,获得积分10
8秒前
慕青应助枕安采纳,获得10
8秒前
9秒前
9秒前
瑾蘆完成签到 ,获得积分10
9秒前
9秒前
深情水香发布了新的文献求助10
10秒前
温暖代芙发布了新的文献求助50
10秒前
刘涵完成签到 ,获得积分10
10秒前
Lynn完成签到,获得积分10
10秒前
11秒前
YFW完成签到,获得积分10
11秒前
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725774
求助须知:如何正确求助?哪些是违规求助? 3270731
关于积分的说明 9968503
捐赠科研通 2986177
什么是DOI,文献DOI怎么找? 1638126
邀请新用户注册赠送积分活动 777953
科研通“疑难数据库(出版商)”最低求助积分说明 747333