Manipulator with Integrated Flexible Tactile Sensing Arrays for Kiwifruit Ripeness and Size Classification

成熟度 材料科学 触觉传感器 操纵器(设备) 仿生学 纳米技术 机器人 人工智能 计算机科学 生物 植物 成熟
作者
Junchang Zhang,Leqin Qin,Ruiqin Ma,Marija Brkić Bakarić,Blanka Tobolková
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c12158
摘要

Fruit grading for ripeness and size is an essential process in the supply chain. Incorrect grading can easily lead to spoiled and degraded fruits entering the market, reducing consumers' confidence in purchasing. At the same time, it is easy to cause the fruit supply chain to reduce profits, unreasonable resource allocation, and related practitioners' income. The current mainstream machine vision grading and manual grading in the production line have dilemmas such as susceptibility to environmental interference, inconsistent grading standards, high cost, and labor shortage. To overcome these problems, this study proposes an integrated flexible tactile sensing array (3 × 4) manipulator for efficient, stable, low-cost, and accurate ripeness and size grading of kiwifruit. The flexible sensing manipulator grasps the kiwifruit, detects the hardness of the kiwifruit by relying on tactile sensing, and determines the ripeness level based on the hardness. The size of the kiwifruit is also differentiated according to whether there is a significant change in the resistance of the topmost sensing unit of the flexible pressure sensor array. The 0, 1, 2, 3, 4, and 5 anomalies that may occur in actual production were tested and combined with machine learning KNN, SVM, and RF algorithms for data modeling and grading. The results show that the lowest accuracy of 0, 1, 2, 3, 4, and 5 possible outliers is 86.67% (KNN), 95.83% (SVM), and 92.5% (RF), respectively. KNN has the lowest classification effect, and SVM has the best. This study overcomes the drawbacks of inefficient destructive detection and unstable manual detection and makes up for the vulnerability of single machine vision to interference from environmental factors. This study can alleviate the challenges caused by fruit wastage and promote the sustainable production and consumption of the fruit industry chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
au发布了新的文献求助10
刚刚
慕青应助zhaoyan采纳,获得10
刚刚
WENc完成签到,获得积分10
1秒前
暖羊羊Y完成签到 ,获得积分10
1秒前
小魏完成签到,获得积分10
1秒前
3秒前
NexusExplorer应助自信的冬日采纳,获得10
3秒前
纪你巴完成签到,获得积分10
3秒前
wuhan发布了新的文献求助10
3秒前
HalfGumps完成签到,获得积分10
4秒前
王安卉发布了新的文献求助10
4秒前
4秒前
大模型应助clx采纳,获得10
4秒前
研友_VZG7GZ应助WENc采纳,获得10
4秒前
疯狂的科研小羊完成签到 ,获得积分10
5秒前
笑一笑发布了新的文献求助10
5秒前
柚子完成签到,获得积分10
5秒前
WHEN完成签到 ,获得积分10
5秒前
电子完成签到,获得积分20
5秒前
aifeeling完成签到,获得积分10
5秒前
yar应助BJQ666采纳,获得10
6秒前
6秒前
感性的安露完成签到,获得积分10
7秒前
克偃统统发布了新的文献求助50
7秒前
赵小蓉完成签到,获得积分10
7秒前
敏感元正完成签到,获得积分10
8秒前
yanyuqing发布了新的文献求助10
9秒前
zqlxueli发布了新的文献求助30
9秒前
WNL完成签到,获得积分10
9秒前
八方面完成签到,获得积分10
10秒前
10秒前
千愁完成签到,获得积分10
11秒前
共享精神应助和谐念珍采纳,获得10
11秒前
Vitalis完成签到,获得积分10
11秒前
lx840518完成签到,获得积分10
11秒前
薛婧旌完成签到,获得积分10
11秒前
TangRan发布了新的文献求助10
12秒前
吾身无拘应助莽哥采纳,获得20
12秒前
12秒前
hao发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294825
求助须知:如何正确求助?哪些是违规求助? 2930769
关于积分的说明 8448091
捐赠科研通 2603125
什么是DOI,文献DOI怎么找? 1420943
科研通“疑难数据库(出版商)”最低求助积分说明 660770
邀请新用户注册赠送积分活动 643542