Role of different omics data in the diagnosis of schizophrenia disorder: A machine learning study

精神分裂症(面向对象编程) 组学 心理学 精神科 机器学习 数据科学 计算机科学 人工智能 生物信息学 生物
作者
Aarthy Varathan,Suntharalingam Senthooran,Pratheeba Jeyananthan
出处
期刊:Schizophrenia Research [Elsevier BV]
卷期号:271: 38-46
标识
DOI:10.1016/j.schres.2024.07.026
摘要

Schizophrenia is a serious mental disorder that affects millions of people worldwide. This disorder slowly disintegrates thinking ability and changes behaviours of patients. These patients will show some psychotic symptoms such as hallucinations, delusions, thought disorder and movement disorder. These symptoms are in common with some other psychiatric disorders such as bipolar disorder, major depressive disorder and mood spectrum disorder. As patients would require immediate treatment, an on-time diagnosis is critical. This study explores the use of omics data in diagnosis of schizophrenia. Transcriptome, miRNA and epigenome data are used in diagnosis of patients with schizophrenia with the aid of machine learning algorithms. As the data is in high dimension, mutual information and feature importance are independently used for selecting relevant features for the study. Selected sets of features (biomarkers) are individually used with different machine learning algorithms and their performances are compared to select the best-performing model. This study shows that the top 140 miRNA features selected using mutual information along with support vector machines give the highest accuracy (0.86 ± 0.07) in the diagnosis of schizophrenia. All reported accuracies are validated using 5-fold cross validation. They are further validated using leave one out cross validation and the accuracies are reported in the supplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助wang5945采纳,获得10
刚刚
无花果应助勤劳的鹤轩采纳,获得10
刚刚
2秒前
2秒前
小田完成签到,获得积分10
3秒前
4秒前
小Z顺利毕业完成签到,获得积分10
4秒前
TIWOSS发布了新的文献求助10
6秒前
王宇发布了新的文献求助10
7秒前
bkagyin应助xiaoyang采纳,获得10
7秒前
Orange应助YIZHIZOU采纳,获得10
8秒前
芥楠完成签到,获得积分10
9秒前
jhb完成签到 ,获得积分10
10秒前
Cactus应助111采纳,获得10
10秒前
11秒前
11秒前
id完成签到,获得积分10
12秒前
12秒前
czp完成签到,获得积分10
12秒前
13秒前
yu完成签到,获得积分10
13秒前
芒果与鱼发布了新的文献求助10
13秒前
15秒前
66完成签到 ,获得积分10
15秒前
Super发布了新的文献求助50
16秒前
心灵美的飞机完成签到,获得积分10
16秒前
16秒前
bkagyin应助mzhnx采纳,获得10
16秒前
17秒前
小甜甜完成签到,获得积分10
19秒前
黑暗向日葵完成签到,获得积分10
19秒前
19秒前
向址完成签到 ,获得积分10
20秒前
21秒前
YIZHIZOU发布了新的文献求助10
21秒前
如意契完成签到,获得积分10
21秒前
zyl应助TIWOSS采纳,获得10
21秒前
fjh应助心灵美的飞机采纳,获得30
21秒前
胡帅发布了新的文献求助10
22秒前
李昆朋完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814