Using machine learning to classify the immunosuppressive activity of per- and polyfluoroalkyl substances

药理学 人工智能 传统医学 医学 化学 机器学习 计算机科学
作者
Yuxin Xuan,Yulu Wang,Rui Li,Yuyan Zhong,Na Wang,Lingyin Zhang,Qian Chen,Shuling Yu,Jintao Yuan
出处
期刊:Toxicology Mechanisms and Methods [Informa]
卷期号:: 1-9
标识
DOI:10.1080/15376516.2024.2387733
摘要

Per- and polyfluoroalkyl substances (PFASs), one of the persistent organic pollutants, have immunosuppressive effects. The evaluation of this effect has been the focus of regulatory toxicology. In this investigation, 146 PFASs (immunosuppressive or nonimmunosuppressive) and corresponding concentration gradients were collected from literature, and their structures were characterized by using Dragon descriptors. Feature importance analysis and stepwise feature elimination are used for feature selection. Three machine learning (ML) methods, namely Random Forest (RF), Extreme Gradient Boosting Machine (XGB), and Categorical Boosting Machine (CB), were utilized for model development. The model interpretability was explored by feature importance analysis and correlation analysis. The findings indicated that the three models developed have exhibited excellent performance. Among them, the best-performing RF model has an average AUC score of 0.9720 for the testing set. The results of the feature importance analysis demonstrated that concentration, SpPosA_X, IVDE, R2s, and SIC2 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. In conclusion, this study is the first application of ML models to investigate the immunosuppressive activity of PFASs. The variables used in the models can help understand the mechanism of the immunosuppressive activity of PFASs, allow researchers to more effectively assess the immunosuppressive potential of a large number of PFASs, and thus better guide environmental and health risk assessment efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邮电大队长完成签到,获得积分10
1秒前
3秒前
character577完成签到,获得积分10
5秒前
XM完成签到,获得积分10
6秒前
6秒前
乐观的雁易完成签到 ,获得积分10
7秒前
fcc发布了新的文献求助10
8秒前
思源应助小n采纳,获得10
11秒前
矢思然发布了新的文献求助10
12秒前
颜云尔发布了新的文献求助10
12秒前
烟花应助逻辑卷采纳,获得10
14秒前
Echo发布了新的文献求助10
15秒前
桐桐应助fcc采纳,获得10
15秒前
一一发布了新的文献求助10
16秒前
18秒前
搜集达人应助可爱牛青采纳,获得10
19秒前
20秒前
dnicly发布了新的文献求助10
21秒前
21秒前
李爱国应助Wed采纳,获得30
22秒前
23秒前
23秒前
24秒前
小天发布了新的文献求助10
24秒前
在水一方应助xiaohu采纳,获得10
24秒前
24秒前
一一一发布了新的文献求助10
26秒前
希望天下0贩的0应助tleeny采纳,获得10
26秒前
慕青应助啊亮采纳,获得10
27秒前
28秒前
科研狗发布了新的文献求助10
29秒前
QinQin发布了新的文献求助10
30秒前
一一完成签到,获得积分10
31秒前
36秒前
华仔应助张小马采纳,获得10
37秒前
传奇3应助一一一采纳,获得10
38秒前
40秒前
日笙完成签到,获得积分10
40秒前
可爱牛青发布了新的文献求助10
42秒前
深情安青应助QinQin采纳,获得30
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220