清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using machine learning to classify the immunosuppressive activity of per- and polyfluoroalkyl substances

药理学 人工智能 传统医学 医学 化学 机器学习 计算机科学
作者
Yuxin Xuan,Yulu Wang,Rui Li,Yuyan Zhong,Na Wang,Lingyin Zhang,Qian Chen,Shuling Yu,Jintao Yuan
出处
期刊:Toxicology Mechanisms and Methods [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/15376516.2024.2387733
摘要

Per- and polyfluoroalkyl substances (PFASs), one of the persistent organic pollutants, have immunosuppressive effects. The evaluation of this effect has been the focus of regulatory toxicology. In this investigation, 146 PFASs (immunosuppressive or nonimmunosuppressive) and corresponding concentration gradients were collected from literature, and their structures were characterized by using Dragon descriptors. Feature importance analysis and stepwise feature elimination are used for feature selection. Three machine learning (ML) methods, namely Random Forest (RF), Extreme Gradient Boosting Machine (XGB), and Categorical Boosting Machine (CB), were utilized for model development. The model interpretability was explored by feature importance analysis and correlation analysis. The findings indicated that the three models developed have exhibited excellent performance. Among them, the best-performing RF model has an average AUC score of 0.9720 for the testing set. The results of the feature importance analysis demonstrated that concentration, SpPosA_X, IVDE, R2s, and SIC2 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. In conclusion, this study is the first application of ML models to investigate the immunosuppressive activity of PFASs. The variables used in the models can help understand the mechanism of the immunosuppressive activity of PFASs, allow researchers to more effectively assess the immunosuppressive potential of a large number of PFASs, and thus better guide environmental and health risk assessment efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zj完成签到,获得积分10
3秒前
Zj发布了新的文献求助10
6秒前
济民财完成签到,获得积分10
14秒前
搜集达人应助111111111采纳,获得10
32秒前
Wang完成签到 ,获得积分20
56秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
111111111发布了新的文献求助10
1分钟前
奈思完成签到 ,获得积分10
1分钟前
轩辕冰夏发布了新的文献求助10
1分钟前
麻花阳完成签到,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助20
2分钟前
六一完成签到 ,获得积分10
2分钟前
Glitter完成签到 ,获得积分10
2分钟前
2分钟前
怪杰完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
董姗姗完成签到,获得积分10
3分钟前
水木应助东方越彬采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
4分钟前
xiaoyi完成签到 ,获得积分10
4分钟前
theo完成签到 ,获得积分10
4分钟前
syyyy完成签到 ,获得积分10
4分钟前
4分钟前
所所应助心灵美语兰采纳,获得10
4分钟前
syyyy关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
yffff完成签到,获得积分10
5分钟前
Wang发布了新的文献求助10
5分钟前
5分钟前
zh完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
慕青应助Wang采纳,获得10
6分钟前
波波完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292