Using machine learning to classify the immunosuppressive activity of per- and polyfluoroalkyl substances

药理学 人工智能 传统医学 医学 化学 机器学习 计算机科学
作者
Yuxin Xuan,Yulu Wang,Rui Li,Yuyan Zhong,Na Wang,Lingyin Zhang,Qian Chen,Shuling Yu,Jintao Yuan
出处
期刊:Toxicology Mechanisms and Methods [Informa]
卷期号:35 (1): 72-80
标识
DOI:10.1080/15376516.2024.2387733
摘要

Per- and polyfluoroalkyl substances (PFASs), one of the persistent organic pollutants, have immunosuppressive effects. The evaluation of this effect has been the focus of regulatory toxicology. In this investigation, 146 PFASs (immunosuppressive or nonimmunosuppressive) and corresponding concentration gradients were collected from literature, and their structures were characterized by using Dragon descriptors. Feature importance analysis and stepwise feature elimination are used for feature selection. Three machine learning (ML) methods, namely Random Forest (RF), Extreme Gradient Boosting Machine (XGB), and Categorical Boosting Machine (CB), were utilized for model development. The model interpretability was explored by feature importance analysis and correlation analysis. The findings indicated that the three models developed have exhibited excellent performance. Among them, the best-performing RF model has an average AUC score of 0.9720 for the testing set. The results of the feature importance analysis demonstrated that concentration, SpPosA_X, IVDE, R2s, and SIC2 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. In conclusion, this study is the first application of ML models to investigate the immunosuppressive activity of PFASs. The variables used in the models can help understand the mechanism of the immunosuppressive activity of PFASs, allow researchers to more effectively assess the immunosuppressive potential of a large number of PFASs, and thus better guide environmental and health risk assessment efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾凇完成签到 ,获得积分10
刚刚
醉熏的伊发布了新的文献求助10
1秒前
闫奥完成签到,获得积分10
1秒前
1秒前
2秒前
王木木发布了新的文献求助10
2秒前
2秒前
Er魁发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
叶轮机械完成签到,获得积分10
3秒前
HCT完成签到,获得积分10
3秒前
大模型应助掮客采纳,获得10
3秒前
4秒前
琦琦完成签到 ,获得积分10
4秒前
4秒前
5秒前
烂漫的南风完成签到,获得积分10
5秒前
淡定的夏青完成签到,获得积分10
5秒前
5秒前
缓慢钢笔发布了新的文献求助10
5秒前
pj发布了新的文献求助10
6秒前
xiaoze完成签到,获得积分10
6秒前
huang完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
我不理解完成签到,获得积分10
7秒前
qiuxu完成签到,获得积分10
7秒前
周少完成签到,获得积分0
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
醉熏的伊完成签到,获得积分10
9秒前
xiaoze发布了新的文献求助10
9秒前
9秒前
Jenny完成签到 ,获得积分10
10秒前
ZSC发布了新的文献求助10
10秒前
10秒前
面壁人2233完成签到,获得积分10
10秒前
咳炎泥马完成签到,获得积分10
11秒前
gaohar完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147