CoNglyPred: Accurate Prediction of N‐Linked Glycosylation Sites Using ESM‐2 and Structural Features With Graph Network and Co‐Attention

计算机科学 图形 嵌入 数据挖掘 校准 机器学习 人工智能 理论计算机科学 数学 统计
作者
Hongmei Wang,Long Zhao,Ziyuan Yu,Ximin Zeng,Shaoping Shi
出处
期刊:Proteomics [Wiley]
被引量:2
标识
DOI:10.1002/pmic.202400210
摘要

ABSTRACT N‐Linked glycosylation is crucial for various biological processes such as protein folding, immune response, and cellular transport. Traditional experimental methods for determining N‐linked glycosylation sites entail substantial time and labor investment, which has led to the development of computational approaches as a more efficient alternative. However, due to the limited availability of 3D structural data, existing prediction methods often struggle to fully utilize structural information and fall short in integrating sequence and structural information effectively. Motivated by the progress of protein pretrained language models (pLMs) and the breakthrough in protein structure prediction, we introduced a high‐accuracy model called CoNglyPred. Having compared various pLMs, we opt for the large‐scale pLM ESM‐2 to extract sequence embeddings, thus mitigating certain limitations associated with manual feature extraction. Meanwhile, our approach employs a graph transformer network to process the 3D protein structures predicted by AlphaFold2. The final graph output and ESM‐2 embedding are intricately integrated through a co‐attention mechanism. Among a series of comprehensive experiments on the independent test dataset, CoNglyPred outperforms state‐of‐the‐art models and demonstrates exceptional performance in case study. In addition, we are the first to report the uncertainty of N‐linked glycosylation predictors using expected calibration error and expected uncertainty calibration error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fancy应助bubble采纳,获得30
1秒前
皮代谷发布了新的文献求助10
1秒前
陶逸豪发布了新的文献求助10
1秒前
阿九发布了新的文献求助10
1秒前
abcd完成签到,获得积分20
2秒前
2秒前
今后应助cjh采纳,获得10
2秒前
denny完成签到,获得积分20
3秒前
AAA房地产小王完成签到,获得积分10
3秒前
Meng发布了新的文献求助10
3秒前
3秒前
4秒前
大模型应助jeremyher采纳,获得10
5秒前
5秒前
AN应助WU采纳,获得10
6秒前
香蕉觅云应助WU采纳,获得10
6秒前
6秒前
7秒前
SciGPT应助发发呆采纳,获得10
7秒前
温纲完成签到,获得积分10
8秒前
gavin发布了新的文献求助10
9秒前
Yaseen发布了新的文献求助10
9秒前
9秒前
科研通AI6.1应助柴啊采纳,获得30
9秒前
11秒前
WMT完成签到 ,获得积分10
11秒前
yxy发布了新的文献求助10
13秒前
13秒前
cc发布了新的文献求助30
13秒前
14秒前
打打应助ccc6195采纳,获得20
15秒前
包尚易发布了新的文献求助50
15秒前
pbj发布了新的文献求助10
15秒前
15秒前
xxxhm发布了新的文献求助10
16秒前
rui2820完成签到,获得积分10
16秒前
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792