CoNglyPred: Accurate Prediction of N‐Linked Glycosylation Sites Using ESM‐2 and Structural Features With Graph Network and Co‐Attention

计算机科学 图形 嵌入 数据挖掘 校准 机器学习 人工智能 理论计算机科学 数学 统计
作者
Hongmei Wang,Long Zhao,Ziyuan Yu,Ximin Zeng,Shaoping Shi
出处
期刊:Proteomics [Wiley]
被引量:2
标识
DOI:10.1002/pmic.202400210
摘要

ABSTRACT N‐Linked glycosylation is crucial for various biological processes such as protein folding, immune response, and cellular transport. Traditional experimental methods for determining N‐linked glycosylation sites entail substantial time and labor investment, which has led to the development of computational approaches as a more efficient alternative. However, due to the limited availability of 3D structural data, existing prediction methods often struggle to fully utilize structural information and fall short in integrating sequence and structural information effectively. Motivated by the progress of protein pretrained language models (pLMs) and the breakthrough in protein structure prediction, we introduced a high‐accuracy model called CoNglyPred. Having compared various pLMs, we opt for the large‐scale pLM ESM‐2 to extract sequence embeddings, thus mitigating certain limitations associated with manual feature extraction. Meanwhile, our approach employs a graph transformer network to process the 3D protein structures predicted by AlphaFold2. The final graph output and ESM‐2 embedding are intricately integrated through a co‐attention mechanism. Among a series of comprehensive experiments on the independent test dataset, CoNglyPred outperforms state‐of‐the‐art models and demonstrates exceptional performance in case study. In addition, we are the first to report the uncertainty of N‐linked glycosylation predictors using expected calibration error and expected uncertainty calibration error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助zxp12373采纳,获得10
刚刚
番茄椰完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
春风完成签到 ,获得积分10
2秒前
2秒前
Jay01完成签到,获得积分20
2秒前
isabelwy发布了新的文献求助10
2秒前
小于子88完成签到,获得积分10
2秒前
义气芷荷完成签到 ,获得积分10
2秒前
CodeCraft应助善良尔安采纳,获得10
2秒前
酷波er应助王麒采纳,获得10
2秒前
3秒前
低温少年发布了新的文献求助10
3秒前
4秒前
4秒前
小丹完成签到,获得积分10
4秒前
CipherSage应助喵喵盖被采纳,获得10
4秒前
白藏主完成签到,获得积分10
4秒前
4秒前
4秒前
张启凤完成签到,获得积分10
5秒前
5秒前
陈乔乔完成签到 ,获得积分10
6秒前
早安完成签到 ,获得积分10
6秒前
蛋卷完成签到 ,获得积分10
6秒前
JamesPei应助CHEN_ZE_LU采纳,获得10
6秒前
6秒前
番茄椰发布了新的文献求助10
7秒前
三岁完成签到,获得积分10
7秒前
AAA发布了新的文献求助10
7秒前
7秒前
杨德帅发布了新的文献求助10
8秒前
荷叶边边头完成签到,获得积分10
8秒前
白藏主发布了新的文献求助10
8秒前
kmttb给kmttb的求助进行了留言
8秒前
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401