亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CoNglyPred: Accurate Prediction of N‐Linked Glycosylation Sites Using ESM‐2 and Structural Features With Graph Network and Co‐Attention

计算机科学 图形 嵌入 数据挖掘 校准 机器学习 人工智能 理论计算机科学 数学 统计
作者
Hongmei Wang,Long Zhao,Ziyuan Yu,Ximin Zeng,Shaoping Shi
出处
期刊:Proteomics [Wiley]
标识
DOI:10.1002/pmic.202400210
摘要

ABSTRACT N‐Linked glycosylation is crucial for various biological processes such as protein folding, immune response, and cellular transport. Traditional experimental methods for determining N‐linked glycosylation sites entail substantial time and labor investment, which has led to the development of computational approaches as a more efficient alternative. However, due to the limited availability of 3D structural data, existing prediction methods often struggle to fully utilize structural information and fall short in integrating sequence and structural information effectively. Motivated by the progress of protein pretrained language models (pLMs) and the breakthrough in protein structure prediction, we introduced a high‐accuracy model called CoNglyPred. Having compared various pLMs, we opt for the large‐scale pLM ESM‐2 to extract sequence embeddings, thus mitigating certain limitations associated with manual feature extraction. Meanwhile, our approach employs a graph transformer network to process the 3D protein structures predicted by AlphaFold2. The final graph output and ESM‐2 embedding are intricately integrated through a co‐attention mechanism. Among a series of comprehensive experiments on the independent test dataset, CoNglyPred outperforms state‐of‐the‐art models and demonstrates exceptional performance in case study. In addition, we are the first to report the uncertainty of N‐linked glycosylation predictors using expected calibration error and expected uncertainty calibration error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
15秒前
Chenzr完成签到,获得积分10
25秒前
科研小白白白完成签到,获得积分10
39秒前
1分钟前
情怀应助欢喜怀绿采纳,获得30
1分钟前
1分钟前
1分钟前
朱珠贝完成签到,获得积分10
1分钟前
xxxc发布了新的文献求助10
1分钟前
图南发布了新的文献求助10
1分钟前
1分钟前
Lorin完成签到 ,获得积分10
1分钟前
莘莘发布了新的文献求助10
1分钟前
图南完成签到,获得积分10
1分钟前
1分钟前
llm发布了新的文献求助10
1分钟前
1分钟前
xxxc完成签到,获得积分20
1分钟前
搜集达人应助莘莘采纳,获得10
1分钟前
1分钟前
莘莘完成签到,获得积分10
1分钟前
小二郎应助Llawite采纳,获得10
1分钟前
隐形曼青应助llm采纳,获得10
2分钟前
2分钟前
Swii发布了新的文献求助10
2分钟前
wanli完成签到,获得积分10
2分钟前
彭于晏应助ste56采纳,获得10
2分钟前
2分钟前
wangch198201完成签到 ,获得积分10
2分钟前
慧慧发布了新的文献求助10
2分钟前
3分钟前
ste56发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
叶十七完成签到,获得积分10
3分钟前
欢喜怀绿发布了新的文献求助30
3分钟前
FashionBoy应助ste56采纳,获得10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880894
关于积分的说明 8217276
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377786
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623327