已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive Learning for Dynamic Features and Noisy Labels

计算机科学 人工智能 模式识别(心理学) 计算机视觉 机器学习
作者
Shilin Gu,Chao Xu,Dewen Hu,Chenping Hou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3489217
摘要

Applying current machine learning algorithms in complex and open environments remains challenging, especially when different changing elements are coupled and the training data is scarce. For example, in the activity recognition task, the motion sensors may change position or fall off due to the intensity of the activity, leading to changes in feature space and finally resulting in label noise. Learning from such a problem where the dynamic features are coupled with noisy labels is crucial but rarely studied, particularly when the noisy samples in new feature space are limited. In this paper, we tackle the above problem by proposing a novel two-stage algorithm, called Adaptive Learning for Dynamic features and Noisy labels (ALDN). Specifically, optimal transport is firstly modified to map the previously learned heterogeneous model to the prior model of the current stage. Then, to fully reuse the mapped prior model, we add a simple yet efficient regularizer as the consistency constraint to assist both the estimation of the noise transition matrix and the model training in the current stage. Finally, two implementations with direct (ALDN-D) and indirect (ALDN-ID) constraints are illustrated for better investigation. More importantly, we provide theoretical guarantees for risk minimization of ALDN-D and ALDN-ID. Extensive experiments validate the effectiveness of the proposed algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾艾完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
勤恳冰淇淋完成签到 ,获得积分10
5秒前
檀123完成签到 ,获得积分10
7秒前
烟花应助艾艾采纳,获得10
9秒前
9秒前
娜娜发布了新的文献求助10
15秒前
开心的中心完成签到 ,获得积分10
15秒前
xiaowang完成签到,获得积分10
15秒前
跳跃的摩托完成签到 ,获得积分10
16秒前
朱宸完成签到,获得积分10
18秒前
赘婿应助机智的青槐采纳,获得10
20秒前
慕青应助meikoo采纳,获得10
21秒前
耿宇航完成签到 ,获得积分10
24秒前
zzyh307完成签到 ,获得积分0
24秒前
25秒前
27秒前
卡奇Mikey完成签到,获得积分10
27秒前
肖礼成发布了新的文献求助10
28秒前
31秒前
32秒前
34秒前
小猫来啦完成签到,获得积分10
35秒前
PjZhang发布了新的文献求助10
36秒前
shl发布了新的文献求助10
38秒前
39秒前
xiuxiuzhang完成签到 ,获得积分10
40秒前
肖礼成完成签到,获得积分10
40秒前
Owen应助娜娜采纳,获得10
41秒前
bkagyin应助shl采纳,获得10
43秒前
meikoo发布了新的文献求助10
43秒前
LY_Qin完成签到,获得积分10
43秒前
雪白元风完成签到 ,获得积分10
44秒前
54秒前
冷静新烟完成签到,获得积分20
55秒前
努力搞科研完成签到,获得积分10
56秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803