A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

异常检测 计算机科学 时间序列 人工智能 人工神经网络 图形 数据挖掘 机器学习 数据科学 理论计算机科学
作者
Ming Jin,Huan Yee Koh,Qingsong Wen,Daniele Zambon,Cesare Alippi,Geoffrey I. Webb,Irwin King,Shirui Pan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10466-10485 被引量:57
标识
DOI:10.1109/tpami.2024.3443141
摘要

Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的语海完成签到,获得积分10
刚刚
刚刚
活力静曼发布了新的文献求助10
1秒前
1秒前
科研通AI5应助zwk采纳,获得30
3秒前
3秒前
搜集达人应助妥协采纳,获得10
4秒前
4秒前
5秒前
科研通AI5应助neko采纳,获得10
5秒前
薯愿发布了新的文献求助10
6秒前
6秒前
坦率的棉花糖完成签到 ,获得积分10
7秒前
7秒前
taotao发布了新的文献求助10
8秒前
8秒前
Angela完成签到,获得积分10
8秒前
优势构象发布了新的文献求助10
10秒前
啊啊啊肥发布了新的文献求助10
10秒前
11秒前
秋叶发布了新的文献求助10
11秒前
11秒前
Ronggaz发布了新的文献求助10
11秒前
SRsora完成签到,获得积分10
12秒前
wushengdeyu完成签到,获得积分10
13秒前
14秒前
科研通AI5应助HJJHJH采纳,获得50
14秒前
15秒前
16秒前
天天快乐应助linxi采纳,获得10
16秒前
优势构象完成签到,获得积分10
17秒前
17秒前
miao发布了新的文献求助10
18秒前
xzh发布了新的文献求助10
20秒前
20秒前
曲奇完成签到,获得积分10
21秒前
饼冰饼发布了新的文献求助10
22秒前
科研通AI5应助taotao采纳,获得10
23秒前
24秒前
尊敬雅容应助滕擎采纳,获得20
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460