OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning

计算机科学 培训(气象学) 联合学习 训练集 数据建模 人工智能 数据库 物理 气象学
作者
Rui Ye,Wenhao Wang,Jingyi Chai,Dihan Li,Zexi Li,Yinda Xu,Yaxin Du,Yanfeng Wang,Siheng Chen
标识
DOI:10.1145/3637528.3671582
摘要

Trained on massive publicly available data, large language models (LLMs) have demonstrated tremendous success across various fields. While more data contributes to better performance, a disconcerting reality is that high-quality public data will be exhausted in a few years. In this paper, we offer a potential next step for contemporary LLMs: collaborative and privacy-preserving LLM training on the underutilized distributed private data via federated learning (FL), where multiple data owners collaboratively train a shared model without transmitting raw data. To achieve this, we build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM. It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms. Besides, OpenFedLLM supports training on diverse domains, where we cover 8 training datasets; and provides comprehensive evaluations, where we cover 30+ evaluation metrics. Through extensive experiments, we observe that all FL algorithms outperform local training on training LLMs, demonstrating a clear performance improvement across a variety of settings. Notably, in a financial benchmark, Llama2-7B fine-tuned by applying any FL algorithm can outperform GPT-4 by a significant margin, while the model obtained through individual training cannot, demonstrating strong motivation for clients to participate in FL. The code is available at https://github.com/rui-ye/OpenFedLLM. The full version of our paper is available at https://arxiv.org/pdf/2402.06954.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sangxue完成签到 ,获得积分10
刚刚
叮叮当当完成签到,获得积分10
1秒前
ming完成签到,获得积分10
1秒前
怕黑凝海发布了新的文献求助10
1秒前
爱静静应助杨羕采纳,获得10
1秒前
LO一一VE发布了新的文献求助20
4秒前
vv完成签到 ,获得积分10
5秒前
8秒前
还是算了完成签到,获得积分10
9秒前
汉堡包应助王哪跑采纳,获得10
9秒前
Davidjun完成签到,获得积分10
9秒前
10秒前
研友_Ljqal8完成签到,获得积分10
13秒前
prince8891发布了新的文献求助10
13秒前
drbrianlau完成签到,获得积分10
13秒前
xiaojcom完成签到,获得积分10
13秒前
14秒前
fuguier发布了新的文献求助10
15秒前
123456789发布了新的文献求助10
18秒前
望望旺仔牛奶完成签到,获得积分10
18秒前
Nakjeong完成签到 ,获得积分10
20秒前
team完成签到,获得积分10
21秒前
wenjian发布了新的文献求助10
22秒前
朴实依琴完成签到,获得积分10
23秒前
怕黑凝海完成签到,获得积分20
24秒前
戴维少尉完成签到,获得积分10
25秒前
123456789完成签到,获得积分20
26秒前
大意的天空完成签到,获得积分10
27秒前
yangxin614完成签到,获得积分10
27秒前
leilei完成签到 ,获得积分10
29秒前
滴答dddd完成签到,获得积分10
30秒前
美丽凡阳完成签到,获得积分10
31秒前
李双艳完成签到,获得积分20
31秒前
殷启维完成签到,获得积分10
34秒前
34秒前
矮小的盼夏完成签到 ,获得积分10
34秒前
阿巴阿巴完成签到,获得积分10
34秒前
黑糖珍珠完成签到 ,获得积分10
35秒前
在水一方应助zzd采纳,获得10
37秒前
Agreenhand完成签到 ,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356924
求助须知:如何正确求助?哪些是违规求助? 2980550
关于积分的说明 8694611
捐赠科研通 2662221
什么是DOI,文献DOI怎么找? 1457683
科研通“疑难数据库(出版商)”最低求助积分说明 674849
邀请新用户注册赠送积分活动 665815