已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning

计算机科学 培训(气象学) 联合学习 训练集 数据建模 人工智能 数据库 物理 气象学
作者
Rui Ye,Wenhao Wang,Jingyi Chai,Dihan Li,Zexi Li,Yinda Xu,Yaxin Du,Yanfeng Wang,Siheng Chen
标识
DOI:10.1145/3637528.3671582
摘要

Trained on massive publicly available data, large language models (LLMs) have demonstrated tremendous success across various fields. While more data contributes to better performance, a disconcerting reality is that high-quality public data will be exhausted in a few years. In this paper, we offer a potential next step for contemporary LLMs: collaborative and privacy-preserving LLM training on the underutilized distributed private data via federated learning (FL), where multiple data owners collaboratively train a shared model without transmitting raw data. To achieve this, we build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM. It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms. Besides, OpenFedLLM supports training on diverse domains, where we cover 8 training datasets; and provides comprehensive evaluations, where we cover 30+ evaluation metrics. Through extensive experiments, we observe that all FL algorithms outperform local training on training LLMs, demonstrating a clear performance improvement across a variety of settings. Notably, in a financial benchmark, Llama2-7B fine-tuned by applying any FL algorithm can outperform GPT-4 by a significant margin, while the model obtained through individual training cannot, demonstrating strong motivation for clients to participate in FL. The code is available at https://github.com/rui-ye/OpenFedLLM. The full version of our paper is available at https://arxiv.org/pdf/2402.06954.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
魔山西红柿完成签到,获得积分10
5秒前
yao发布了新的文献求助10
7秒前
du完成签到,获得积分10
7秒前
毛毛酱酱酱给毛毛酱酱酱的求助进行了留言
8秒前
8秒前
JamesPei应助阿峰采纳,获得10
9秒前
ourWorks发布了新的文献求助10
10秒前
Alinf完成签到,获得积分10
13秒前
13秒前
13秒前
看文献看到秃头完成签到,获得积分10
16秒前
霖宸羽发布了新的文献求助10
17秒前
18秒前
山月鹿完成签到,获得积分10
19秒前
Light应助Xiaoli采纳,获得10
19秒前
aobacae发布了新的文献求助20
20秒前
英姑应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
今后应助科研通管家采纳,获得10
20秒前
丁sir发布了新的文献求助10
21秒前
23秒前
24秒前
陈鑫浩完成签到,获得积分10
24秒前
27秒前
小蘑菇应助霖宸羽采纳,获得10
27秒前
zhaoming发布了新的文献求助10
29秒前
wdw2501发布了新的文献求助10
30秒前
31秒前
艾利克斯发布了新的文献求助10
31秒前
31秒前
31秒前
33秒前
wangrblzu应助勤恳涵菡采纳,获得10
34秒前
阿伟1999完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766902
求助须知:如何正确求助?哪些是违规求助? 3311339
关于积分的说明 10158179
捐赠科研通 3026407
什么是DOI,文献DOI怎么找? 1661172
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755846