HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network

计算机科学 人工智能 深度学习 图形 嵌入 机器学习 残余物 知识图 知识库 理论计算机科学 算法
作者
Pengbo Duan,Kuo Yang,Xin‐zhuan Su,Shuyue Fan,Xin Luna Dong,Fenghui Zhang,Xianan Li,Xiaoyan Xing,Qiang Zhu,Jian Yu,Xuezhong Zhou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5) 被引量:3
标识
DOI:10.1093/bib/bbae414
摘要

Abstract Target identification is one of the crucial tasks in drug research and development, as it aids in uncovering the action mechanism of herbs/drugs and discovering new therapeutic targets. Although multiple algorithms of herb target prediction have been proposed, due to the incompleteness of clinical knowledge and the limitation of unsupervised models, accurate identification for herb targets still faces huge challenges of data and models. To address this, we proposed a deep learning-based target prediction framework termed HTINet2, which designed three key modules, namely, traditional Chinese medicine (TCM) and clinical knowledge graph embedding, residual graph representation learning, and supervised target prediction. In the first module, we constructed a large-scale knowledge graph that covers the TCM properties and clinical treatment knowledge of herbs, and designed a component of deep knowledge embedding to learn the deep knowledge embedding of herbs and targets. In the remaining two modules, we designed a residual-like graph convolution network to capture the deep interactions among herbs and targets, and a Bayesian personalized ranking loss to conduct supervised training and target prediction. Finally, we designed comprehensive experiments, of which comparison with baselines indicated the excellent performance of HTINet2 (HR@10 increased by 122.7% and NDCG@10 by 35.7%), ablation experiments illustrated the positive effect of our designed modules of HTINet2, and case study demonstrated the reliability of the predicted targets of Artemisia annua and Coptis chinensis based on the knowledge base, literature, and molecular docking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whj完成签到 ,获得积分10
刚刚
熊猫发布了新的文献求助10
1秒前
CHOSEN1发布了新的文献求助10
1秒前
2秒前
敏感的山彤完成签到,获得积分10
3秒前
sajelsch完成签到,获得积分10
4秒前
乐易发布了新的文献求助30
4秒前
爆米花应助凡子惠采纳,获得30
4秒前
4秒前
乐乐应助默默的冬菱采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
代军完成签到,获得积分10
6秒前
风吹麦田完成签到,获得积分0
7秒前
不停发布了新的文献求助10
7秒前
zhoujin完成签到,获得积分10
8秒前
筰侑完成签到,获得积分10
8秒前
百事可爱完成签到 ,获得积分10
9秒前
努力发文的医学僧完成签到,获得积分10
9秒前
科研民工发布了新的文献求助10
9秒前
小纯发布了新的文献求助10
9秒前
10秒前
fx完成签到 ,获得积分10
10秒前
galaxy发布了新的文献求助10
10秒前
11秒前
12秒前
JamesPei应助傲娇的婷采纳,获得10
12秒前
Zyc发布了新的文献求助10
12秒前
12秒前
zhoujin发布了新的文献求助10
13秒前
13秒前
pjh发布了新的文献求助10
14秒前
汉堡包应助kyo采纳,获得10
14秒前
Lisiqi完成签到,获得积分10
14秒前
followZ完成签到,获得积分10
15秒前
浮游应助无限傲南采纳,获得30
16秒前
zhangxasq完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328787
求助须知:如何正确求助?哪些是违规求助? 4468465
关于积分的说明 13905232
捐赠科研通 4361524
什么是DOI,文献DOI怎么找? 2395825
邀请新用户注册赠送积分活动 1389289
关于科研通互助平台的介绍 1360094