HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network

计算机科学 人工智能 深度学习 图形 嵌入 机器学习 残余物 知识图 知识库 理论计算机科学 算法
作者
Pengbo Duan,Kuo Yang,Xin‐zhuan Su,Shuyue Fan,Xin Luna Dong,Fenghui Zhang,Xianan Li,Xiaoyan Xing,Qiang Zhu,Jian Yu,Xuezhong Zhou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5) 被引量:3
标识
DOI:10.1093/bib/bbae414
摘要

Abstract Target identification is one of the crucial tasks in drug research and development, as it aids in uncovering the action mechanism of herbs/drugs and discovering new therapeutic targets. Although multiple algorithms of herb target prediction have been proposed, due to the incompleteness of clinical knowledge and the limitation of unsupervised models, accurate identification for herb targets still faces huge challenges of data and models. To address this, we proposed a deep learning-based target prediction framework termed HTINet2, which designed three key modules, namely, traditional Chinese medicine (TCM) and clinical knowledge graph embedding, residual graph representation learning, and supervised target prediction. In the first module, we constructed a large-scale knowledge graph that covers the TCM properties and clinical treatment knowledge of herbs, and designed a component of deep knowledge embedding to learn the deep knowledge embedding of herbs and targets. In the remaining two modules, we designed a residual-like graph convolution network to capture the deep interactions among herbs and targets, and a Bayesian personalized ranking loss to conduct supervised training and target prediction. Finally, we designed comprehensive experiments, of which comparison with baselines indicated the excellent performance of HTINet2 (HR@10 increased by 122.7% and NDCG@10 by 35.7%), ablation experiments illustrated the positive effect of our designed modules of HTINet2, and case study demonstrated the reliability of the predicted targets of Artemisia annua and Coptis chinensis based on the knowledge base, literature, and molecular docking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
拔丝香芋发布了新的文献求助10
2秒前
曼凡发布了新的文献求助10
2秒前
lh完成签到,获得积分10
3秒前
laville完成签到,获得积分10
4秒前
4秒前
皮天川发布了新的文献求助10
4秒前
快乐的发布了新的文献求助10
4秒前
5秒前
醍醐不醒完成签到,获得积分10
5秒前
5秒前
wanci应助TJY采纳,获得10
5秒前
5秒前
6秒前
打打应助ZH采纳,获得10
6秒前
6秒前
6秒前
Z1987完成签到,获得积分10
7秒前
啊啊啊啊完成签到,获得积分10
7秒前
醍醐不醒发布了新的文献求助10
8秒前
激昂的亦瑶完成签到,获得积分10
8秒前
顾天理发布了新的文献求助10
10秒前
啊啊啊啊发布了新的文献求助10
10秒前
17381362015发布了新的文献求助10
10秒前
银银发布了新的文献求助10
10秒前
11秒前
科研鸟发布了新的文献求助10
11秒前
离毕业又进一步完成签到,获得积分10
11秒前
十六发布了新的文献求助10
12秒前
grammays发布了新的文献求助10
14秒前
katarinabluu完成签到,获得积分10
14秒前
zorn完成签到,获得积分10
15秒前
好货分享完成签到,获得积分10
16秒前
顾天理完成签到,获得积分10
16秒前
干净吐司完成签到,获得积分20
17秒前
zorn发布了新的文献求助10
17秒前
学生白完成签到,获得积分10
19秒前
LaTeXer应助稳重的水蓉采纳,获得50
19秒前
smottom应助潇洒映冬采纳,获得20
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420