HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network

计算机科学 人工智能 深度学习 图形 嵌入 机器学习 残余物 知识图 知识库 理论计算机科学 算法
作者
Pengbo Duan,Kuo Yang,Xin‐zhuan Su,Shuyue Fan,Xin Luna Dong,Fenghui Zhang,Xianan Li,Xiaoyan Xing,Qiang Zhu,Jian Yu,Xuezhong Zhou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5) 被引量:3
标识
DOI:10.1093/bib/bbae414
摘要

Abstract Target identification is one of the crucial tasks in drug research and development, as it aids in uncovering the action mechanism of herbs/drugs and discovering new therapeutic targets. Although multiple algorithms of herb target prediction have been proposed, due to the incompleteness of clinical knowledge and the limitation of unsupervised models, accurate identification for herb targets still faces huge challenges of data and models. To address this, we proposed a deep learning-based target prediction framework termed HTINet2, which designed three key modules, namely, traditional Chinese medicine (TCM) and clinical knowledge graph embedding, residual graph representation learning, and supervised target prediction. In the first module, we constructed a large-scale knowledge graph that covers the TCM properties and clinical treatment knowledge of herbs, and designed a component of deep knowledge embedding to learn the deep knowledge embedding of herbs and targets. In the remaining two modules, we designed a residual-like graph convolution network to capture the deep interactions among herbs and targets, and a Bayesian personalized ranking loss to conduct supervised training and target prediction. Finally, we designed comprehensive experiments, of which comparison with baselines indicated the excellent performance of HTINet2 (HR@10 increased by 122.7% and NDCG@10 by 35.7%), ablation experiments illustrated the positive effect of our designed modules of HTINet2, and case study demonstrated the reliability of the predicted targets of Artemisia annua and Coptis chinensis based on the knowledge base, literature, and molecular docking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mian完成签到,获得积分10
刚刚
1秒前
1秒前
于嗣濠完成签到 ,获得积分10
1秒前
36456657应助CC采纳,获得10
1秒前
优雅山柏发布了新的文献求助10
2秒前
Jacky完成签到,获得积分10
2秒前
脑洞疼应助无情的白桃采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
3秒前
3秒前
zoko发布了新的文献求助10
3秒前
3秒前
曾经的臻发布了新的文献求助10
3秒前
华仔应助S1mple_gentleman采纳,获得10
3秒前
科研通AI5应助CC采纳,获得10
3秒前
3秒前
4秒前
4秒前
张静静完成签到,获得积分10
5秒前
5秒前
震666发布了新的文献求助30
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
117发布了新的文献求助10
5秒前
6秒前
6秒前
酶没美镁完成签到,获得积分10
6秒前
小二郎应助Rui采纳,获得10
6秒前
Libra完成签到,获得积分10
7秒前
雪儿发布了新的文献求助30
7秒前
无悔呀发布了新的文献求助10
7秒前
小巧的可仁完成签到 ,获得积分10
7秒前
7秒前
zhao完成签到,获得积分10
8秒前
masu发布了新的文献求助10
8秒前
冷酷尔琴发布了新的文献求助10
9秒前
Ll发布了新的文献求助10
9秒前
优雅山柏完成签到,获得积分10
9秒前
XinyiZhang发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740