HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network

计算机科学 人工智能 深度学习 图形 嵌入 机器学习 残余物 知识图 知识库 理论计算机科学 算法
作者
Pengbo Duan,Kuo Yang,Xin‐zhuan Su,Shuyue Fan,Xin Luna Dong,Fenghui Zhang,Xianan Li,Xiaoyan Xing,Qiang Zhu,Jian Yu,Xuezhong Zhou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5) 被引量:3
标识
DOI:10.1093/bib/bbae414
摘要

Abstract Target identification is one of the crucial tasks in drug research and development, as it aids in uncovering the action mechanism of herbs/drugs and discovering new therapeutic targets. Although multiple algorithms of herb target prediction have been proposed, due to the incompleteness of clinical knowledge and the limitation of unsupervised models, accurate identification for herb targets still faces huge challenges of data and models. To address this, we proposed a deep learning-based target prediction framework termed HTINet2, which designed three key modules, namely, traditional Chinese medicine (TCM) and clinical knowledge graph embedding, residual graph representation learning, and supervised target prediction. In the first module, we constructed a large-scale knowledge graph that covers the TCM properties and clinical treatment knowledge of herbs, and designed a component of deep knowledge embedding to learn the deep knowledge embedding of herbs and targets. In the remaining two modules, we designed a residual-like graph convolution network to capture the deep interactions among herbs and targets, and a Bayesian personalized ranking loss to conduct supervised training and target prediction. Finally, we designed comprehensive experiments, of which comparison with baselines indicated the excellent performance of HTINet2 (HR@10 increased by 122.7% and NDCG@10 by 35.7%), ablation experiments illustrated the positive effect of our designed modules of HTINet2, and case study demonstrated the reliability of the predicted targets of Artemisia annua and Coptis chinensis based on the knowledge base, literature, and molecular docking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果大娘发布了新的文献求助30
1秒前
蕙心完成签到 ,获得积分10
1秒前
galaxy发布了新的文献求助10
1秒前
2秒前
Ava应助要减肥翠梅采纳,获得10
3秒前
黄三金发布了新的文献求助10
3秒前
Ty关注了科研通微信公众号
3秒前
桐桐应助大力的迎松采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
浮游应助ryo采纳,获得10
5秒前
梦恬发布了新的文献求助10
5秒前
hui发布了新的文献求助10
6秒前
6秒前
tcpghc完成签到,获得积分20
6秒前
谭谨川完成签到,获得积分10
8秒前
8秒前
8秒前
Isabella完成签到,获得积分10
9秒前
10秒前
galaxy完成签到,获得积分20
11秒前
石头完成签到 ,获得积分10
11秒前
11秒前
芙蓉王源发布了新的文献求助30
12秒前
脑洞疼应助家的温暖采纳,获得10
13秒前
Linzi完成签到,获得积分10
13秒前
多非计划发布了新的文献求助10
13秒前
lic发布了新的文献求助10
13秒前
一小揪儿发布了新的文献求助10
14秒前
15秒前
15秒前
登录中发布了新的文献求助10
17秒前
浮游呦呦完成签到,获得积分10
17秒前
科研通AI6应助芙蓉王源采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
星空发布了新的文献求助10
19秒前
超标准雨完成签到,获得积分10
19秒前
大力的迎松完成签到,获得积分20
19秒前
20秒前
Chuh_yb发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Emotional Behavior 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4606561
求助须知:如何正确求助?哪些是违规求助? 4013711
关于积分的说明 12428448
捐赠科研通 3694877
什么是DOI,文献DOI怎么找? 2036979
邀请新用户注册赠送积分活动 1070092
科研通“疑难数据库(出版商)”最低求助积分说明 954192