HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network

计算机科学 人工智能 深度学习 图形 嵌入 机器学习 残余物 知识图 知识库 理论计算机科学 算法
作者
Pengbo Duan,Kuo Yang,Xin‐zhuan Su,Shuyue Fan,Xin Luna Dong,Fenghui Zhang,Xianan Li,Xiaoyan Xing,Qiang Zhu,Jian Yu,Xuezhong Zhou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5) 被引量:3
标识
DOI:10.1093/bib/bbae414
摘要

Abstract Target identification is one of the crucial tasks in drug research and development, as it aids in uncovering the action mechanism of herbs/drugs and discovering new therapeutic targets. Although multiple algorithms of herb target prediction have been proposed, due to the incompleteness of clinical knowledge and the limitation of unsupervised models, accurate identification for herb targets still faces huge challenges of data and models. To address this, we proposed a deep learning-based target prediction framework termed HTINet2, which designed three key modules, namely, traditional Chinese medicine (TCM) and clinical knowledge graph embedding, residual graph representation learning, and supervised target prediction. In the first module, we constructed a large-scale knowledge graph that covers the TCM properties and clinical treatment knowledge of herbs, and designed a component of deep knowledge embedding to learn the deep knowledge embedding of herbs and targets. In the remaining two modules, we designed a residual-like graph convolution network to capture the deep interactions among herbs and targets, and a Bayesian personalized ranking loss to conduct supervised training and target prediction. Finally, we designed comprehensive experiments, of which comparison with baselines indicated the excellent performance of HTINet2 (HR@10 increased by 122.7% and NDCG@10 by 35.7%), ablation experiments illustrated the positive effect of our designed modules of HTINet2, and case study demonstrated the reliability of the predicted targets of Artemisia annua and Coptis chinensis based on the knowledge base, literature, and molecular docking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智平灵发布了新的文献求助10
1秒前
JiA发布了新的文献求助10
2秒前
T_MC郭发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
wy18567337203发布了新的文献求助10
3秒前
S7完成签到,获得积分10
3秒前
烟花应助自觉士萧采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
英俊的铭应助duudhdh采纳,获得30
5秒前
5秒前
科研通AI6应助小小采纳,获得30
6秒前
隐形曼青应助小吴同学采纳,获得10
6秒前
6秒前
7秒前
YUDI完成签到,获得积分10
7秒前
大个应助Toby采纳,获得10
7秒前
靓丽的海亦完成签到,获得积分10
7秒前
dazzlejj发布了新的文献求助10
7秒前
糖糖应助New采纳,获得10
7秒前
慕容松完成签到,获得积分10
8秒前
雪白千山发布了新的文献求助10
8秒前
Orange应助风中冰香采纳,获得20
8秒前
玺白白应助显赫一世采纳,获得10
8秒前
peanut发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
zz完成签到,获得积分10
9秒前
ACE发布了新的文献求助10
10秒前
10秒前
雪花发布了新的文献求助10
10秒前
德瓦达达娃完成签到,获得积分10
11秒前
吕吕吕发布了新的文献求助100
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082142
求助须知:如何正确求助?哪些是违规求助? 4299568
关于积分的说明 13396361
捐赠科研通 4123386
什么是DOI,文献DOI怎么找? 2258311
邀请新用户注册赠送积分活动 1262584
关于科研通互助平台的介绍 1196616