Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting

阳极 电池(电) 合金 材料科学 选择性激光熔化 冶金 激光器 化学 电极 功率(物理) 物理 微观结构 物理化学 量子力学 光学
作者
Guangpan Peng,Chenhao Niu,Yuankun Geng,Weipeng Duan,Shu Cao
出处
期刊:Crystals [Multidisciplinary Digital Publishing Institute]
卷期号:14 (9): 784-784 被引量:2
标识
DOI:10.3390/cryst14090784
摘要

To improve the discharge performance of aluminum–air batteries, CeO2/Al6061 composites were prepared as an anode using selective laser melting (SLM). Response surface methodology (RSM) was employed, and the test results were linearly fitted. A prediction model for the forming quality of the composite anode was established, and the reliability of the model and the interaction between process parameters were explored based on variance analysis and significance testing. On this basis, with corrosion potential, self-corrosion rate, and discharge voltage as optimization objectives, the optimal solution set of the SLM forming CeO2/Al6061 anode process parameter was solved through a genetic algorithm, and experimental verification was conducted. The results indicate that the optimal process range for the forming quality and various properties of composite materials is laser power of 265~285 W, scanning speed of 985~1025 mm/s, and scanning spacing of 0.116~0.140 mm. The optimized process parameters were selected for reliability testing, and the errors were all within 3.0%, verifying the accuracy and reliability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MXene给我买了个榴莲的求助进行了留言
1秒前
1秒前
俎树同发布了新的文献求助10
2秒前
赘婿应助小鱼冻干采纳,获得10
3秒前
4秒前
CodeCraft应助从容采纳,获得10
4秒前
酷雅的小跟班完成签到,获得积分20
4秒前
5秒前
AptRank完成签到,获得积分10
6秒前
科目三应助mingk采纳,获得10
6秒前
8秒前
10秒前
10秒前
11秒前
传奇3应助奋斗枫采纳,获得10
11秒前
田様应助刘文静采纳,获得10
14秒前
脑洞疼应助zhaomx11采纳,获得10
14秒前
卡卡发布了新的文献求助10
15秒前
16秒前
李_发布了新的文献求助10
16秒前
wanci应助美好的秋烟采纳,获得10
17秒前
17秒前
刻苦大门完成签到 ,获得积分10
17秒前
竹筏过海应助雪山飞龙采纳,获得30
18秒前
zsl完成签到,获得积分10
18秒前
cheng发布了新的文献求助10
21秒前
21秒前
orixero应助Ao采纳,获得10
22秒前
斯文可仁发布了新的文献求助10
23秒前
24秒前
刘文静发布了新的文献求助10
26秒前
mingk发布了新的文献求助10
27秒前
斯文可仁完成签到,获得积分10
29秒前
30秒前
32秒前
隐形曼青应助烂漫猫咪采纳,获得10
32秒前
32秒前
结实大白完成签到,获得积分10
32秒前
斯文败类应助圆圆的波仔采纳,获得10
32秒前
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736001
求助须知:如何正确求助?哪些是违规求助? 3279686
关于积分的说明 10017009
捐赠科研通 2996428
什么是DOI,文献DOI怎么找? 1644048
邀请新用户注册赠送积分活动 781753
科研通“疑难数据库(出版商)”最低求助积分说明 749425