Learning Joint 2-D and 3-D Graph Diffusion Models for Complete Molecule Generation

反向 生成模型 图形 算法 标量(数学) 计算机科学 生成语法 人工智能 数学 理论计算机科学 几何学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,Bowen Du,NULL AUTHOR_ID
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11857-11871 被引量:4
标识
DOI:10.1109/tnnls.2024.3416328
摘要

Designing new molecules is essential for drug discovery and material science. Recently, deep generative models that aim to model molecule distribution have made promising progress in narrowing down the chemical research space and generating high-fidelity molecules. However, current generative models only focus on modeling 2-D bonding graphs or 3-D geometries, which are two complementary descriptors for molecules. The lack of ability to jointly model them limits the improvement of generation quality and further downstream applications. In this article, we propose a joint 2-D and 3-D graph diffusion model (JODO) that generates geometric graphs representing complete molecules with atom types, formal charges, bond information, and 3-D coordinates. To capture the correlation between 2-D molecular graphs and 3-D geometries in the diffusion process, we develop a diffusion graph transformer (DGT) to parameterize the data prediction model that recovers the original data from noisy data. The DGT uses a relational attention mechanism that enhances the interaction between node and edge representations. This mechanism operates concurrently with the propagation and update of scalar attributes and geometric vectors. Our model can also be extended for inverse molecular design targeting single or multiple quantum properties. In our comprehensive evaluation pipeline for unconditional joint generation, the experimental results show that JODO remarkably outperforms the baselines on the QM9 and GEOM-Drugs datasets. Furthermore, our model excels in few-step fast sampling, as well as in inverse molecule design and molecular graph generation. Our code is provided in https://github.com/GRAPH-0/JODO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安心完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
xingzou发布了新的文献求助10
1秒前
3秒前
我执完成签到,获得积分10
3秒前
3秒前
qq完成签到 ,获得积分10
4秒前
上官若男应助MQRR采纳,获得10
4秒前
李四完成签到 ,获得积分10
5秒前
乐乐乐乐乐乐应助李秋秋采纳,获得10
5秒前
5秒前
情怀应助后青春期的痘采纳,获得10
5秒前
5秒前
6秒前
111发布了新的文献求助10
6秒前
登登发布了新的文献求助10
7秒前
KIKI完成签到,获得积分10
8秒前
Rain发布了新的文献求助10
8秒前
烊驼完成签到,获得积分10
9秒前
9秒前
姜鸽完成签到,获得积分10
11秒前
星辰大海应助Rain采纳,获得10
11秒前
Murmur完成签到,获得积分10
12秒前
12秒前
在水一方应助学习猴采纳,获得10
12秒前
12秒前
13秒前
Vincent完成签到,获得积分10
14秒前
16秒前
文献狗完成签到,获得积分10
16秒前
玄博元完成签到,获得积分10
17秒前
17秒前
18秒前
可乐冰淇淋完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助112233采纳,获得10
19秒前
后青春期的痘完成签到,获得积分20
20秒前
酷炫翠桃应助风信子deon01采纳,获得10
21秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216667
求助须知:如何正确求助?哪些是违规求助? 2865842
关于积分的说明 8149328
捐赠科研通 2532367
什么是DOI,文献DOI怎么找? 1365722
科研通“疑难数据库(出版商)”最低求助积分说明 644579
邀请新用户注册赠送积分活动 617511