光电探测器
小型化
探测器
材料科学
全息术
计算机科学
电磁辐射
吸收(声学)
光电子学
灵敏度(控制系统)
纳米技术
光学
电子工程
物理
电信
工程类
复合材料
作者
Renquan Guan,Hao Xu,Zheng Lou,Zhao Zhao,Lili Wang
标识
DOI:10.1002/advs.202402530
摘要
Abstract Recently, metasurface‐based photodetectors (metaphotodetectors) have been developed and applied in various fields. Metasurfaces are artificial materials with unique properties that have emerged over the past decade, and photodetectors are powerful tools used to quantify incident electromagnetic wave information by measuring changes in the conductivity of irradiated materials. Through an efficient microstructural design, metasurfaces can effectively regulate numerous characteristics of electromagnetic waves and have demonstrated unique advantages in various fields, including holographic projection, stealth, biological image enhancement, biological sensing, and energy absorption applications. Photodetectors play a crucial role in military and civilian applications; therefore, efficient photodetectors are essential for optical communications, imaging technology, and spectral analysis. Metaphotodetectors have considerably improved sensitivity and noise‐equivalent power and miniaturization over conventional photodetectors. This review summarizes the advantages of metaphotodetectors based on five aspects. Furthermore, the applications of metaphotodetectors in various fields including military and civil applications, are systematically discussed. It highlights the potential future applications and developmental trends of metasurfaces in metaphotodetectors, provides systematic guidance for their development, and establishes metasurfaces as a promising technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI