Thermodynamic evaluation of metal foams with partial filling in a pipe
物理
金属
热力学
机械
冶金
材料科学
作者
K. Kiran Kumar,Banjara Kotresha,Kishan Naik
出处
期刊:Physics of Fluids [American Institute of Physics] 日期:2024-09-01卷期号:36 (9)被引量:1
标识
DOI:10.1063/5.0217709
摘要
This study presents numerical findings on the flow and heat transfer irreversibility when metal foams are partially filled in a horizontal pipe. A heater is embedded in the pipe's circumference with a known heat input. Aluminum metal foam, characterized by a pore density of 10 and porosity of 0.95, is placed next to the inner wall of the pipe to enhance heat transfer. To determine the optimal thickness of the metal foam for thermodynamic performance enhancement, metal foams of five different thicknesses (10–80 mm) are examined under forced convection heat transfer conditions. The study integrates the Darcy Extended Forchheimer and local thermal nonequilibrium models to predict flow and heat transfer characteristics through the metal foams. Validation of the numerical methodology is conducted by comparing the results with experimental data available in the literature. A novel aspect of this investigation is the application of the second law of thermodynamics to analyze the thermodynamic performance of metal foams. Exergy and irreversibility analyses are used to evaluate the thermodynamic performance, revealing that a pipe filled with metal foams up to a thickness of 40 mm exhibits superior thermodynamic performance compared to other cases examined in the study.