TESR: Two-Stage Approach for Enhancement and Super-Resolution of Remote Sensing Images

计算机科学 水准点(测量) 人工智能 超分辨率 高分辨率 阶段(地层学) 比例(比率) 模式识别(心理学) 图像(数学) 图像质量 计算机视觉 遥感 地质学 古生物学 物理 量子力学 大地测量学
作者
Anas M. Ali,Bilel Benjdira,Anis Koubâa,Wadii Boulila,Walid El‐Shafai
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (9): 2346-2346 被引量:11
标识
DOI:10.3390/rs15092346
摘要

Remote Sensing (RS) images are usually captured at resolutions lower than those required. Deep Learning (DL)-based super-resolution (SR) architectures are typically used to increase the resolution artificially. In this study, we designed a new architecture called TESR (Two-stage approach for Enhancement and super-resolution), leveraging the power of Vision Transformers (ViT) and the Diffusion Model (DM) to increase the resolution of RS images artificially. The first stage is the ViT-based model, which serves to increase resolution. The second stage is an iterative DM pre-trained on a larger dataset, which serves to increase image quality. Every stage is trained separately on the given task using a separate dataset. The self-attention mechanism of the ViT helps the first stage generate global and contextual details. The iterative Diffusion Model helps the second stage enhance the image’s quality and generate consistent and harmonic fine details. We found that TESR outperforms state-of-the-art architectures on super-resolution of remote sensing images on the UCMerced benchmark dataset. Considering the PSNR/SSIM metrics, TESR improves SR image quality as compared to state-of-the-art techniques from 34.03/0.9301 to 35.367/0.9449 in the scale ×2. On a scale of ×3, it improves from 29.92/0.8408 to 32.311/0.91143. On a scale of ×4, it improves from 27.77/0.7630 to 31.951/0.90456. We also found that the Charbonnier loss outperformed other loss functions in the training of both stages of TESR. The improvement was by a margin of 21.5%/14.3%, in the PSNR/SSIM, respectively. The source code of TESR is open to the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
龙凌音完成签到,获得积分10
1秒前
1秒前
Alane发布了新的文献求助10
2秒前
chen应助我不是多肉采纳,获得10
2秒前
2秒前
小m发布了新的文献求助10
3秒前
叶帆完成签到,获得积分10
3秒前
大龙哥886应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
大龙哥886应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
人九完成签到 ,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
大龙哥886应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
yznfly应助科研通管家采纳,获得150
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
小徐发布了新的文献求助10
5秒前
5秒前
milikki完成签到,获得积分10
6秒前
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300