TESR: Two-Stage Approach for Enhancement and Super-Resolution of Remote Sensing Images

计算机科学 水准点(测量) 人工智能 超分辨率 高分辨率 阶段(地层学) 比例(比率) 模式识别(心理学) 图像(数学) 图像质量 计算机视觉 遥感 地质学 古生物学 物理 大地测量学 量子力学
作者
Anas M. Ali,Bilel Benjdira,Anis Koubâa,Wadii Boulila,Walid El‐Shafai
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (9): 2346-2346 被引量:11
标识
DOI:10.3390/rs15092346
摘要

Remote Sensing (RS) images are usually captured at resolutions lower than those required. Deep Learning (DL)-based super-resolution (SR) architectures are typically used to increase the resolution artificially. In this study, we designed a new architecture called TESR (Two-stage approach for Enhancement and super-resolution), leveraging the power of Vision Transformers (ViT) and the Diffusion Model (DM) to increase the resolution of RS images artificially. The first stage is the ViT-based model, which serves to increase resolution. The second stage is an iterative DM pre-trained on a larger dataset, which serves to increase image quality. Every stage is trained separately on the given task using a separate dataset. The self-attention mechanism of the ViT helps the first stage generate global and contextual details. The iterative Diffusion Model helps the second stage enhance the image’s quality and generate consistent and harmonic fine details. We found that TESR outperforms state-of-the-art architectures on super-resolution of remote sensing images on the UCMerced benchmark dataset. Considering the PSNR/SSIM metrics, TESR improves SR image quality as compared to state-of-the-art techniques from 34.03/0.9301 to 35.367/0.9449 in the scale ×2. On a scale of ×3, it improves from 29.92/0.8408 to 32.311/0.91143. On a scale of ×4, it improves from 27.77/0.7630 to 31.951/0.90456. We also found that the Charbonnier loss outperformed other loss functions in the training of both stages of TESR. The improvement was by a margin of 21.5%/14.3%, in the PSNR/SSIM, respectively. The source code of TESR is open to the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫琉花雨完成签到 ,获得积分10
刚刚
科研通AI2S应助风中的语蝶采纳,获得10
刚刚
刚刚
杨杨完成签到 ,获得积分10
1秒前
1秒前
sanmu发布了新的文献求助10
1秒前
李爱国应助飞云采纳,获得10
1秒前
Koko完成签到,获得积分20
2秒前
与一完成签到 ,获得积分10
2秒前
迎风竹林下应助橘子阳光采纳,获得10
2秒前
爱吃鳕贝的小熊维尼完成签到,获得积分10
3秒前
简单澜发布了新的文献求助10
3秒前
4秒前
行稳致远发布了新的文献求助30
4秒前
李健应助Kyrie采纳,获得10
4秒前
大个应助lllll采纳,获得10
4秒前
5秒前
Never stall发布了新的文献求助10
5秒前
Buster发布了新的文献求助10
6秒前
材料小学生完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
guoduan完成签到,获得积分10
9秒前
徐昊完成签到,获得积分10
9秒前
袁袁发布了新的文献求助10
10秒前
wangmaosen完成签到,获得积分10
10秒前
丘比特应助材料小学生采纳,获得10
10秒前
香蕉觅云应助自然毛巾采纳,获得10
10秒前
潦草完成签到,获得积分20
11秒前
lllll完成签到,获得积分20
12秒前
DX3906发布了新的文献求助10
13秒前
wangmaosen发布了新的文献求助10
13秒前
66m37完成签到,获得积分10
13秒前
14秒前
活力雁枫完成签到,获得积分10
14秒前
14秒前
传奇3应助南念采纳,获得10
14秒前
LXC完成签到,获得积分10
14秒前
山橘月发布了新的文献求助10
14秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720