Application of machine learning algorithms in electronic medical records to predict amputation-free survival after first revascularization in patients with peripheral artery disease

医学 截肢 动脉疾病 外围设备 内科学 血运重建 疾病 病历 电子病历 心脏病学 外科 血管疾病 医疗急救 心肌梗塞
作者
Yang Liu,Jun-Shuai Xue,Jianjun Jiang
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:383: 175-184 被引量:9
标识
DOI:10.1016/j.ijcard.2023.04.040
摘要

Background This study aimed to apply eight machine learning algorithms to develop the optimal model to predict amputation-free survival (AFS) after first revascularization in patients with peripheral artery disease (PAD). Methods Among 2130 patients from 2011 to 2020, 1260 patients who underwent revascularization were randomly assigned to training set and validation set in an 8:2 ratio. 67 clinical parameters were analyzed by lasso regression analysis. Logistic regression, gradient boosting machine, random forest, decision tree, eXtreme gradient boosting, neural network, Cox regression, and random survival forest (RSF) were applied to develop prediction models. The optimal model was compared with GermanVasc score in testing set comprising patients from 2010. Results The postoperative 1/3/5-year AFS were 90%, 79.4%, and 74.1%. Age (HR:1.035, 95%CI: 1.015–1.056), atrial fibrillation (HR:2.257, 95%CI: 1.193–4.271), cardiac ejection fraction (HR:0.064, 95%CI: 0.009–0.413), Rutherford grade ≥ 5 (HR:1.899, 95%CI: 1.296–2.782), creatinine (HR:1.03, 95%CI: 1.02–1.04), surgery duration (HR:1.03, 95%CI: 1.01–1.05), and fibrinogen (HR:1.292, 95%CI: 1.098–1.521) were independent risk factors. The optimal model was developed by RSF algorithm, with 1/3/5-year AUCs in training set of 0.866 (95% CI:0.819–0.912), 0.854 (95% CI:0.811–0.896), 0.844 (95% CI:0.793–0.894), in validation set of 0.741 (95% CI:0.580–0.902), 0.768 (95% CI:0.654–0.882), 0.836 (95% CI:0.719–0.953), and in testing set of 0.821 (95%CI: 0.711–0.931), 0.802 (95%CI: 0.684–0.919), 0.798 (95%CI: 0.657–0.939). The c-index of the model outperformed GermanVasc Score (0.788 vs 0.730). A dynamic nomogram was published on shinyapp (https://wyy2023.shinyapps.io/amputation/). Conclusion The optimal prediction model for AFS after first revascularization in patients with PAD was developed by RSF algorithm, which exhibited outstanding prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
YoiEmu发布了新的文献求助30
3秒前
4秒前
kingtongx完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
科研通AI2S应助优美的冥幽采纳,获得10
6秒前
6秒前
LL完成签到,获得积分10
9秒前
小蘑菇应助rose123456采纳,获得10
11秒前
11秒前
高高板栗发布了新的文献求助10
11秒前
半糖芝士发布了新的文献求助10
12秒前
13秒前
HEIKU应助huixian采纳,获得10
13秒前
哈哈发布了新的文献求助10
15秒前
kingtongx发布了新的文献求助10
15秒前
zmnzmnzmn应助Peyton Why采纳,获得10
15秒前
科研通AI5应助DE2022采纳,获得10
16秒前
17秒前
20秒前
21秒前
叶子宁完成签到,获得积分10
22秒前
赵苏州发布了新的文献求助10
23秒前
半糖芝士完成签到,获得积分10
23秒前
快乐的寄容完成签到 ,获得积分10
23秒前
科研通AI2S应助YoiEmu采纳,获得10
23秒前
Peyton Why完成签到,获得积分10
24秒前
24秒前
咿呀咿呀发布了新的文献求助10
24秒前
Hello应助未知数采纳,获得10
25秒前
lunhui6453完成签到 ,获得积分10
25秒前
26秒前
赘婿应助鱼仔采纳,获得30
26秒前
DE2022发布了新的文献求助10
27秒前
隐形曼青应助沈陈磊采纳,获得10
29秒前
刘飞发布了新的文献求助10
29秒前
ogeeal发布了新的文献求助10
29秒前
小蘑菇应助赵子采纳,获得10
31秒前
丘比特应助爱你不商量采纳,获得10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775713
求助须知:如何正确求助?哪些是违规求助? 3321315
关于积分的说明 10204848
捐赠科研通 3036291
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783