自旋电子学
凝聚态物理
空中骑兵
范德瓦尔斯力
铁磁性
材料科学
自旋(空气动力学)
居里温度
拓扑绝缘体
拓扑(电路)
物理
量子力学
分子
数学
热力学
组合数学
作者
Brian Casas,Yue Li,Alex Moon,Yan Xin,Conor McKeever,Juan Macy,A. K. Petford‐Long,Charudatta Phatak,Elton J. G. Santos,Eun Sang Choi,Luis Balicas
标识
DOI:10.1002/adma.202212087
摘要
Fe5-x GeTe2 is a centrosymmetric, layered van der Waals (vdW) ferromagnet that displays Curie temperatures Tc (270-330 K) that are within the useful range for spintronic applications. However, little is known about the interplay between its topological spin textures (e.g., merons, skyrmions) with technologically relevant transport properties such as the topological Hall effect (THE) or topological thermal transport. Here, via high-resolution Lorentz transmission electron microscopy, it is shown that merons and anti-meron pairs coexist with Néel skyrmions in Fe5-x GeTe2 over a wide range of temperatures and probe their effects on thermal and electrical transport. A THE is detected, even at room T, that senses merons at higher T's, as well as their coexistence with skyrmions as T is lowered, indicating an on-demand thermally driven formation of either type of spin texture. Remarkably, an unconventional THE is also observed in absence of Lorentz force, and it is attributed to the interaction between charge carriers and magnetic field-induced chiral spin textures. These results expose Fe5-x GeTe2 as a promising candidate for the development of applications in skyrmionics/meronics due to the interplay between distinct but coexisting topological magnetic textures and unconventional transport of charge/heat carriers.
科研通智能强力驱动
Strongly Powered by AbleSci AI