模块化设计
计算机科学
粒度计算
管道(软件)
计算
流变学
可预测性
材料科学
封装(网络)
生物系统
纳米技术
人工智能
算法
数学
粗集
生物
计算机网络
统计
操作系统
复合材料
程序设计语言
作者
Connor Verheyen,Sebastien G. M. Uzel,Armand Kurum,Ellen T. Roche,Jennifer A. Lewis
出处
期刊:Matter
[Elsevier]
日期:2023-02-01
卷期号:6 (3): 1015-1036
被引量:16
标识
DOI:10.1016/j.matt.2023.01.011
摘要
Granular hydrogel matrices have emerged as promising candidates for cell encapsulation, bioprinting, and tissue engineering. However, it remains challenging to design and optimize these materials given their broad compositional and processing parameter space. Here, we combine experimentation and computation to create granular matrices composed of alginate-based bioblocks with controlled structure, rheological properties, and injectability profiles. A custom machine learning pipeline is applied after each phase of experimentation to automatically map the multidimensional input-output patterns into condensed data-driven models. These models are used to assess generalizable predictability and define high-level design rules to guide subsequent phases of development and characterization. Our integrated, modular approach opens new avenues to understanding and controlling the behavior of complex soft materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI