亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms

医学 颅内压 创伤性脑损伤 格拉斯哥昏迷指数 算法 神经重症监护 急诊医学 机器学习 重症监护医学 麻醉 计算机科学 精神科
作者
Dmitry Petrov,Stephen P. Miranda,Ramani Balu,Connor Wathen,Alex P. Vaz,Vinodh Mohan,Christian Colon,Ramon Diaz‐Arrastia
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-8 被引量:1
标识
DOI:10.3171/2022.12.jns221860
摘要

Avoiding intracranial hypertension after traumatic brain injury (TBI) is a foundation of neurocritical care, to minimize secondary brain injury related to elevated intracranial pressure (ICP). However, this approach at best is reactive to episodes of intracranial hypertension, allowing for periods of elevated ICP before therapies can be initiated. Accurate prediction of ICP crises before they occur would permit clinicians to implement preventive strategies, minimize total time with ICP above threshold, and potentially avoid secondary injury. The objective of this study was to develop an algorithm capable of predicting the onset of ICP crises with sufficient lead time to enable application of preventative therapies.Thirty-six patients admitted to a level I trauma center with severe TBI (Glasgow Coma Scale score < 8) between April 2015 and January 2019 who underwent continuous intraparenchymal ICP monitor placement were retrospectively identified. Continuous ICP data were extracted from each monitoring period (range 4-96 hours of monitoring). An ICP crisis was treated as a binary outcome, defined as ICP > 22 mm Hg for at least 75% of the data within a 5-minute interval. ICP data preceding each ICP crisis were grouped into four total data sets of 1- and 2-hour epochs, each with 10- to 20-minute lead-time intervals before an ICP crisis. Crisis and noncrisis events were identified from continuous time-series data and randomly split into 70% for training and 30% for testing, from a subset of 30 patients. Machine learning algorithms were trained to predict ICP crises, including light gradient boosting, extreme gradient boosting, and random forest. Accuracy and area under the receiver operating characteristic curve (AUC) were measured to compare performance. The most predictive algorithm was optimized using feature selection and hyperparameter tuning to avoid overfitting, and then tested on a validation subset of 5 patients. Precision, recall, F1 score, and accuracy were measured.The random forest model demonstrated the highest accuracy (range 0.82-0.88) and AUC (range 0.86-0.88) across all four data sets. Further validation testing revealed high precision (0.76), relatively low recall (0.46), and overall strong predictive performance (F1 score 0.57, accuracy 0.86) for ICP crises. Decision curve analysis showed that the model provided net benefit at probability thresholds above 0.1 and below 0.9.The presented model can provide accurate and timely forecasts of ICP crises in patients with severe TBI 10-20 minutes prior to their occurrence. If validated and implemented in clinical workflows, this algorithm can enable earlier intervention for ICP crises, more effective treatment of intracranial hypertension, and potentially improved outcomes following severe TBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳扬发布了新的文献求助30
2分钟前
柳扬完成签到,获得积分10
3分钟前
洋子发布了新的文献求助10
3分钟前
Owen应助亲爱的葡萄采纳,获得10
5分钟前
5分钟前
5分钟前
Perion完成签到 ,获得积分10
6分钟前
fusheng完成签到 ,获得积分10
7分钟前
燧人氏完成签到 ,获得积分10
7分钟前
浮生完成签到 ,获得积分10
7分钟前
洋子完成签到,获得积分10
7分钟前
周凡淇发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
LYZSh完成签到,获得积分10
8分钟前
科研通AI2S应助Linyi采纳,获得10
9分钟前
Linyi完成签到 ,获得积分20
10分钟前
郭星星完成签到,获得积分10
12分钟前
12分钟前
Echoheart完成签到,获得积分10
12分钟前
久工力发布了新的文献求助10
12分钟前
SciGPT应助久工力采纳,获得10
13分钟前
Jayo完成签到,获得积分10
14分钟前
肆肆完成签到,获得积分10
15分钟前
aaa完成签到 ,获得积分10
16分钟前
叫我陈老师啊完成签到,获得积分10
16分钟前
二牛完成签到,获得积分10
17分钟前
17分钟前
英俊的铭应助科研通管家采纳,获得10
18分钟前
酷波er应助科研通管家采纳,获得10
18分钟前
思维完成签到 ,获得积分20
18分钟前
包容的狗完成签到 ,获得积分10
19分钟前
DQ1175完成签到 ,获得积分10
19分钟前
啦啦完成签到 ,获得积分10
20分钟前
21分钟前
暴躁的元灵完成签到,获得积分10
21分钟前
22分钟前
久工力发布了新的文献求助10
22分钟前
前人树后人果完成签到,获得积分10
24分钟前
未来可期完成签到,获得积分10
24分钟前
情怀应助科研通管家采纳,获得10
26分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059624
求助须知:如何正确求助?哪些是违规求助? 2715495
关于积分的说明 7445347
捐赠科研通 2361098
什么是DOI,文献DOI怎么找? 1251203
科研通“疑难数据库(出版商)”最低求助积分说明 607711
版权声明 596449