Symptom-based clusters in people with ME/CFS: an illustration of clinical variety in a cross-sectional cohort

医学 慢性疲劳综合征 星团(航天器) 队列 横断面研究 物理疗法 内科学 病理 计算机科学 程序设计语言
作者
Anouk W. Vaes,Maarten Van Herck,Qichen Deng,Jeannet M. Delbressine,Leonard A. Jason,Martijn A. Spruit
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12967-023-03946-6
摘要

Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is a complex, heterogenous disease. It has been suggested that subgroups of people with ME/CFS exist, displaying a specific cluster of symptoms. Investigating symptom-based clusters may provide a better understanding of ME/CFS. Therefore, this study aimed to identify clusters in people with ME/CFS based on the frequency and severity of symptoms.Members of the Dutch ME/CFS Foundation completed an online version of the DePaul Symptom Questionnaire version 2. Self-organizing maps (SOM) were used to generate symptom-based clusters using severity and frequency scores of the 79 measured symptoms. An extra dataset (n = 252) was used to assess the reproducibility of the symptom-based clusters.Data of 337 participants were analyzed (82% female; median (IQR) age: 55 (44-63) years). 45 clusters were identified, of which 13 clusters included ≥ 10 patients. Fatigue and PEM were reported across all of the symptom-based clusters, but the clusters were defined by a distinct pattern of symptom severity and frequency, as well as differences in clinical characteristics. 11% of the patients could not be classified into one of the 13 largest clusters. Applying the trained SOM to validation sample, resulted in a similar symptom pattern compared the Dutch dataset.This study demonstrated that in ME/CFS there are subgroups of patients displaying a similar pattern of symptoms. These symptom-based clusters were confirmed in an independent ME/CFS sample. Classification of ME/CFS patients according to severity and symptom patterns might be useful to develop tailored treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助DQY采纳,获得10
刚刚
刚刚
ererrrr发布了新的文献求助10
刚刚
huoshan完成签到,获得积分10
1秒前
感动板凳完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
ding应助998877剑指采纳,获得10
2秒前
2秒前
今后应助不二采纳,获得10
3秒前
科研通AI5应助ruaruaburua采纳,获得10
3秒前
希望天下0贩的0应助laxy采纳,获得10
4秒前
你都吃了那么多完成签到,获得积分10
4秒前
小鬼1004发布了新的文献求助10
5秒前
5秒前
所所应助浪子采纳,获得10
6秒前
7秒前
8秒前
雪花发布了新的文献求助10
8秒前
自信的九娘完成签到,获得积分10
8秒前
哇哈哈完成签到,获得积分20
8秒前
感动板凳发布了新的文献求助10
8秒前
han发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
zho应助嗷唔一口吃掉采纳,获得10
15秒前
DQY发布了新的文献求助10
16秒前
浪子发布了新的文献求助10
16秒前
Ophelia发布了新的文献求助30
16秒前
xtheuv完成签到,获得积分20
17秒前
17秒前
Struggle发布了新的文献求助50
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753323
求助须知:如何正确求助?哪些是违规求助? 3296930
关于积分的说明 10096544
捐赠科研通 3011610
什么是DOI,文献DOI怎么找? 1654049
邀请新用户注册赠送积分活动 788581
科研通“疑难数据库(出版商)”最低求助积分说明 752947