External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966

医学 一致性 磁共振成像 等级间信度 卡帕 矢状面 腰椎 腰痛 组内相关 回顾性队列研究 队列 科恩卡帕 人工智能 核医学 物理疗法 放射科 机器学习 外科 统计 内科学 病理 计算机科学 数学 心理测量学 评定量表 临床心理学 替代医学 几何学
作者
Terence McSweeney,Aleksei Tiulpin,Simo Saarakkala,Jaakko Niinimäki,Rhydian Windsor,Amir Jamaludin,Timor Kadir,Jaro Karppinen,Juhani Määttä
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (7): 484-491 被引量:7
标识
DOI:10.1097/brs.0000000000004572
摘要

Study Design. This is a retrospective observational study to externally validate a deep learning image classification model. Objective. Deep learning models such as SpineNet offer the possibility of automating the process of disk degeneration (DD) classification from magnetic resonance imaging (MRI). External validation is an essential step to their development. The aim of this study was to externally validate SpineNet predictions for DD using Pfirrmann classification and Modic changes (MCs) on data from the Northern Finland Birth Cohort 1966 (NFBC1966). Summary of Data. We validated SpineNet using data from 1331 NFBC1966 participants for whom both lumbar spine MRI data and consensus DD gradings were available. Materials and Methods. SpineNet returned Pfirrmann grade and MC presence from T2-weighted sagittal lumbar MRI sequences from NFBC1966, a data set geographically and temporally separated from its training data set. A range of agreement and reliability metrics were used to compare predictions with expert radiologists. Subsets of data that match SpineNet training data more closely were also tested. Results. Balanced accuracy for DD was 78% (77%–79%) and for MC 86% (85%–86%). Interrater reliability for Pfirrmann grading was Lin concordance correlation coefficient=0.86 (0.85–0.87) and Cohen κ=0.68 (0.67–0.69). In a low back pain subset, these reliability metrics remained largely unchanged. In total, 20.83% of disks were rated differently by SpineNet compared with the human raters, but only 0.85% of disks had a grade difference >1. Interrater reliability for MC detection was κ=0.74 (0.72–0.75). In the low back pain subset, this metric was almost unchanged at κ=0.76 (0.73–0.79). Conclusions. In this study, SpineNet has been benchmarked against expert human raters in the research setting. It has matched human reliability and demonstrates robust performance despite the multiple challenges facing model generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助lost采纳,获得10
刚刚
1秒前
zhaowenxian发布了新的文献求助10
1秒前
1秒前
YULIA完成签到,获得积分10
2秒前
2秒前
yz完成签到,获得积分10
2秒前
美女完成签到,获得积分10
2秒前
2秒前
Moihan完成签到,获得积分10
2秒前
音乐完成签到,获得积分10
2秒前
3秒前
忧郁绿兰完成签到,获得积分10
3秒前
huangyi发布了新的文献求助10
4秒前
4秒前
邓佳鑫Alan应助uniphoton采纳,获得10
4秒前
打打应助哭泣的金鱼采纳,获得10
4秒前
起风了发布了新的文献求助10
5秒前
灬乔完成签到 ,获得积分10
5秒前
yxy发布了新的文献求助10
5秒前
与光同晨发布了新的文献求助10
5秒前
6秒前
陶醉薯片完成签到,获得积分20
6秒前
smartbot完成签到,获得积分10
7秒前
请叫我风吹麦浪应助mi采纳,获得10
7秒前
7秒前
YHL发布了新的文献求助10
7秒前
su完成签到,获得积分10
7秒前
7秒前
自信富完成签到,获得积分10
8秒前
乖乖完成签到 ,获得积分10
8秒前
8秒前
liudiqiu应助Ll采纳,获得10
8秒前
灬乔关注了科研通微信公众号
9秒前
张菁完成签到,获得积分10
9秒前
菠萝吹雪应助xiachengcs采纳,获得30
10秒前
洋洋发布了新的文献求助10
10秒前
10秒前
11秒前
威武爆米花完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762