External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966

医学 一致性 磁共振成像 等级间信度 卡帕 矢状面 腰椎 腰痛 组内相关 回顾性队列研究 队列 科恩卡帕 人工智能 核医学 物理疗法 放射科 机器学习 外科 统计 内科学 病理 计算机科学 数学 心理测量学 评定量表 临床心理学 替代医学 几何学
作者
Terence McSweeney,Aleksei Tiulpin,Simo Saarakkala,Jaakko Niinimäki,Rhydian Windsor,Amir Jamaludin,Timor Kadir,Jaro Karppinen,Juhani Määttä
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (7): 484-491 被引量:7
标识
DOI:10.1097/brs.0000000000004572
摘要

Study Design. This is a retrospective observational study to externally validate a deep learning image classification model. Objective. Deep learning models such as SpineNet offer the possibility of automating the process of disk degeneration (DD) classification from magnetic resonance imaging (MRI). External validation is an essential step to their development. The aim of this study was to externally validate SpineNet predictions for DD using Pfirrmann classification and Modic changes (MCs) on data from the Northern Finland Birth Cohort 1966 (NFBC1966). Summary of Data. We validated SpineNet using data from 1331 NFBC1966 participants for whom both lumbar spine MRI data and consensus DD gradings were available. Materials and Methods. SpineNet returned Pfirrmann grade and MC presence from T2-weighted sagittal lumbar MRI sequences from NFBC1966, a data set geographically and temporally separated from its training data set. A range of agreement and reliability metrics were used to compare predictions with expert radiologists. Subsets of data that match SpineNet training data more closely were also tested. Results. Balanced accuracy for DD was 78% (77%–79%) and for MC 86% (85%–86%). Interrater reliability for Pfirrmann grading was Lin concordance correlation coefficient=0.86 (0.85–0.87) and Cohen κ=0.68 (0.67–0.69). In a low back pain subset, these reliability metrics remained largely unchanged. In total, 20.83% of disks were rated differently by SpineNet compared with the human raters, but only 0.85% of disks had a grade difference >1. Interrater reliability for MC detection was κ=0.74 (0.72–0.75). In the low back pain subset, this metric was almost unchanged at κ=0.76 (0.73–0.79). Conclusions. In this study, SpineNet has been benchmarked against expert human raters in the research setting. It has matched human reliability and demonstrates robust performance despite the multiple challenges facing model generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
至秦发布了新的文献求助10
2秒前
爆米花应助anti1988采纳,获得10
2秒前
3秒前
你爸爸发布了新的文献求助10
4秒前
阳光豆芽发布了新的文献求助10
4秒前
科目三应助paul采纳,获得10
4秒前
肖雪依发布了新的文献求助10
5秒前
一方通行应助Zqs采纳,获得30
6秒前
7秒前
科目三应助雪白机器猫采纳,获得10
8秒前
9秒前
9秒前
10秒前
英姑应助Zhongxiang Peng采纳,获得10
10秒前
无花果应助lvsehx采纳,获得10
10秒前
小巧雪糕完成签到 ,获得积分10
12秒前
DTP发布了新的文献求助10
12秒前
14秒前
ywsss完成签到,获得积分10
14秒前
15秒前
刘蕾发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
不为谁而作的歌完成签到,获得积分10
19秒前
19秒前
李牛牛完成签到,获得积分10
19秒前
鲨鱼牙齿应助幻影采纳,获得10
19秒前
19秒前
风信子完成签到 ,获得积分10
22秒前
25秒前
刘蕾完成签到,获得积分10
25秒前
笨笨烨华发布了新的文献求助10
25秒前
香蕉觅云应助厚朴采纳,获得200
27秒前
28秒前
30秒前
丘比特应助果粒多采纳,获得10
30秒前
科研通AI2S应助AAAA采纳,获得10
31秒前
31秒前
32秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334478
求助须知:如何正确求助?哪些是违规求助? 2963675
关于积分的说明 8610936
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446858
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658622