材料科学
阴极
煅烧
电解质
化学工程
涂层
溶解
电导率
电极
纳米技术
催化作用
物理化学
有机化学
工程类
化学
作者
Xiangyi Zheng,Ruohan Yu,Jie Sun,Yuhao Chen,Jingyu Chen,Jianhao He,Yuxiang Zhang,Bo Han,Guiying Liao,Jinsong Wu,Ruimin Sun,Chenggang Zhou,Liqiang Mai
出处
期刊:Nano Energy
[Elsevier]
日期:2022-11-09
卷期号:105: 108000-108000
被引量:9
标识
DOI:10.1016/j.nanoen.2022.108000
摘要
We present a simple and low-cost interfacial precipitation-conversion reaction strategy, which employs the precursors as orientators to coat ultrathin and surface-gradient layers for reserving the structural integrality and stability of particularize materials. Using the typical high-nickel layered cathode (LiNi0.8Co0.15Al0.05O2, NCA) as a prototype, we successively processed NCA carbonate oxalate precursors with (NH4)2HPO4 and ZrOCl2 solutions to chemically induce Zr species on the NCA surfaces via strong M-PO4-Zr interactions (M = Ni, Co). An ultrathin Zr-contained gradient layer is in-situ self-assembled spontaneously and conformably (NCA@ZP) after calcination. The as-designed NCA@ZP cathode delivers a high capacity of 219.7 mA h·g−1, 23% higher than NCA (179.0 mA h·g−1) at 0.1 C, and exhibits superior rate capability (128.2 mA h·g−1 capacity at 16 C) and cycling stability. Experimental characterization together with calculation further reveal that the residential Zr element at Li+ sites strengthen the adjacent M-O bonds, inhibiting the oxygen evolution and dissolution of transition metal, buffering the internal strains, stabilizing the cathode-electrolyte interface, improving the electrical conductivity and consequently benefiting the cyclability and rate capability. Such a simple precursor-oriented strategy can be easily scaled-up and extended to various application scenarios who encounter unwanted side-reactions or structural degradation during chemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI