Stain normalization using score-based diffusion model through stain separation and overlapped moving window patch strategies

污渍 H&E染色 计算机科学 规范化(社会学) 预处理器 人工智能 染色 数字化病理学 模式识别(心理学) 病理 医学 社会学 人类学
作者
Jiheon Jeong,Kiduk Kim,Yujin Nam,Cristina Eunbee Cho,Heounjeong Go,Namkug Kim
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106335-106335 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.106335
摘要

Hematoxylin and eosin (H&E) staining is the gold standard modality for diagnosis in medicine. However, the dosage ratio of hematoxylin to eosin in H&E staining has not been standardized yet. Additionally, H&E stains fade out at various speeds. Therefore, the staining quality could differ among each image, and stain normalization is a critical preprocessing approach for training deep learning (DL) models, especially in long-term and/or multicenter digital pathology studies. However, conventional methods for stain normalization have some significant drawbacks, such as collapsing in the structure and/or texture of tissue. In addition, conventional methods must require a reference patch or slide. Meanwhile, DL-based methods have a risk of overfitting and/or grid artifacts. We developed a score-based diffusion model of colorization for stain normalization. However, mistransfer, in which the model confuses hematoxylin with eosin, can occur using a score-based diffusion model due to its high diversity nature. To overcome this mistransfer, we propose a stain separation method using sparse non-negative matrix factorization (SNMF), which can decompose pathology slide into Hematoxylin and Eosin to normalize each stain component. Furthermore, inpainting with overlapped moving window patches was used to prevent grid artifacts of whole slide image normalization. Our method can normalize the whole slide pathology images through this stain normalization pipeline with decent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖不点发布了新的文献求助10
刚刚
123发布了新的文献求助10
刚刚
cyb完成签到,获得积分20
2秒前
挽风发布了新的文献求助10
3秒前
4秒前
5秒前
帅气凝云发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
苏卿应助路鹿鹿采纳,获得10
6秒前
6秒前
n0rthstar发布了新的文献求助10
7秒前
8秒前
8秒前
严仕国完成签到,获得积分10
8秒前
V_v_V完成签到,获得积分10
8秒前
9秒前
李爱国应助王叮叮采纳,获得10
9秒前
吉吉发布了新的文献求助10
9秒前
肖不点完成签到,获得积分10
9秒前
10秒前
ziytang发布了新的文献求助10
10秒前
归安发布了新的文献求助10
11秒前
aoao关注了科研通微信公众号
11秒前
12秒前
大吴克发布了新的文献求助10
13秒前
阳光的寻琴完成签到,获得积分20
14秒前
三黑猫应助北栀采纳,获得10
15秒前
慕青应助Yara.H采纳,获得10
16秒前
16秒前
16秒前
cyrong应助长情的一刀采纳,获得10
18秒前
西红柿炒番茄应助小熊采纳,获得20
18秒前
18秒前
MingqingFang发布了新的文献求助30
19秒前
淡淡菠萝发布了新的文献求助10
20秒前
ss发布了新的文献求助10
21秒前
烟花应助钟离的摩拉采纳,获得20
22秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153422
求助须知:如何正确求助?哪些是违规求助? 2804660
关于积分的说明 7860714
捐赠科研通 2462621
什么是DOI,文献DOI怎么找? 1310839
科研通“疑难数据库(出版商)”最低求助积分说明 629400
版权声明 601794