Comparison of structural equation modeling and Bayesian network for de novo construction of a quantitative adverse outcome pathway network

不良结局途径 贝叶斯网络 计算机科学 工作流程 网络模型 结构方程建模 机器学习 人工智能 计算生物学 生物 数据库
作者
Yang Cao
出处
期刊:Alternatives to animal experimentation [ALTEX Edition]
被引量:1
标识
DOI:10.14573/altex.2207113
摘要

Quantitative adverse outcome pathway network (qAOPN) is gaining momentum due to its predictive nature, alignment with quantitative risk assessment, and great potential as a computational new approach methodology (NAM) to reduce laboratory animal tests. The present work aimed to demonstrate two advanced modeling approaches, piecewise structural equation modeling (PSEM) and Bayesian network (BN), for de novo qAOPN model construction based on routine ecotoxicological data. A previously published AOP network comprised of four linear AOPs linking excessive reactive oxygen species production to mortality in aquatic organisms was employed as a case study. The demonstrative case study intended to answer: Which linear AOP in the network contributed the most to the AO? Can any of the upstream KEs accurately predict the AO? What are the advantages and limitations of PSEM or BN in qAOPN development? The outcomes from the two approaches showed that both PSEM and BN are suitable for constructing a complex qAOPN based on limited experimental data. Besides quantification of response-response relationships, both approaches could identify the most influencing linear AOP in a complex network and evaluate the predictive ability of the AOP, albeit some discrepancies in predictive ability were identified for the two approaches using this specific dataset. The advantages and limitations of the two approaches for qAOPN construction are discussed in detail, and suggestions on optimal workflows of PSEM and BN are provided to guide future qAOPN development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
go应助科学家采纳,获得10
刚刚
闪闪映易完成签到,获得积分10
1秒前
550完成签到,获得积分10
1秒前
2秒前
liuhui完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助Alma采纳,获得10
3秒前
坚定的萤发布了新的文献求助30
3秒前
勤奋海之完成签到,获得积分10
3秒前
lxj发布了新的文献求助10
3秒前
3秒前
书白完成签到,获得积分10
4秒前
今日宜关注了科研通微信公众号
4秒前
NexusExplorer应助何幻悲采纳,获得10
5秒前
甜甜不言发布了新的文献求助20
5秒前
咩了个咩完成签到,获得积分20
6秒前
拉长的战斗机完成签到,获得积分10
6秒前
我爱科研完成签到,获得积分10
8秒前
8秒前
FashionBoy应助光亮笑蓝采纳,获得10
8秒前
赘婿应助electronic采纳,获得10
8秒前
乐乐应助刘洋采纳,获得10
9秒前
9秒前
情怀应助半胱氨酸采纳,获得10
9秒前
宝字盖发布了新的文献求助10
9秒前
霍山柳发布了新的文献求助10
10秒前
vsvsgo发布了新的文献求助10
10秒前
wangjun发布了新的文献求助10
10秒前
呐喊也抒情完成签到,获得积分10
11秒前
Zero完成签到,获得积分10
11秒前
11秒前
11111发布了新的文献求助10
11秒前
CipherSage应助annie采纳,获得20
12秒前
Alma完成签到,获得积分10
12秒前
mm完成签到,获得积分10
12秒前
13秒前
华仔应助活力菠萝采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
司空豁应助科研通管家采纳,获得10
15秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3285169
求助须知:如何正确求助?哪些是违规求助? 2922403
关于积分的说明 8411599
捐赠科研通 2594069
什么是DOI,文献DOI怎么找? 1414286
科研通“疑难数据库(出版商)”最低求助积分说明 658811
邀请新用户注册赠送积分活动 640677