Novel dual Z-scheme Bi/BiOI-Bi2O3-C3N4 heterojunctions with synergistic boosted photocatalytic degradation of phenol

苯酚 降级(电信) 光催化 异质结 煅烧 复合数 电子顺磁共振 蚀刻(微加工) 化学 电子转移 苯醌 化学工程 光化学 材料科学 纳米技术 计算机科学 有机化学 催化作用 复合材料 光电子学 工程类 图层(电子) 电信 物理 核磁共振
作者
Qi Wang,Ningyi Li,Meng Tan,Man Deng,Guoxiang Yang,Qiang Li,Hao Du
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:307: 122733-122733 被引量:56
标识
DOI:10.1016/j.seppur.2022.122733
摘要

Photocatalysis is an emerging technique for the remediation of refractory organic contaminants. Herein, a novel dual Z-scheme Bi/BiOI-Bi2O3-C3N4 heterojunctions were constructed through a calcining process following with I− etching and UV-reduction processes. Various analytical technologies were adopted to characterize the materials. As a result, the Bi0 decorated composite presented improved visible-light-response and rapid charge transfer. Due to the synergy of Bi0 and dual Z-scheme heterostructures, a remarkable photocatalytic performance toward phenol degradation was achieved with the highest degradation efficiency of 93.2% and rate constant of 0.0161 min−1 over the optimal composite within 75 min of visible light irradiation. Interestingly, the concentration of the yielded benzoquinone considerably decreased with the introduction of C3N4. Trapping experiments and electron spin resonance (ESR) tests indicated that h+, O2−, OH and e− contributed to phenol remediation, and h+ and O2− were the crucial species toward phenol degradation. Furthermore, outstanding stability was obtained only with a decline of 3.8% after 4 cycles. A reasonable charge transfer mechanism was also proposed. This work provides a new route for in situ construction of Bi0 decorated dual Z-scheme heterojunction for phenolic compounds degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gelinhao完成签到,获得积分10
刚刚
确幸完成签到,获得积分10
1秒前
aikeyan完成签到,获得积分10
3秒前
3秒前
msk完成签到 ,获得积分10
5秒前
香蕉觅云应助豆豆采纳,获得10
6秒前
6秒前
零一完成签到,获得积分10
8秒前
阿辉完成签到 ,获得积分10
9秒前
莫西莫西完成签到 ,获得积分10
10秒前
暖阳完成签到,获得积分10
10秒前
大头欢欢完成签到,获得积分10
12秒前
不想懂完成签到,获得积分10
14秒前
life完成签到,获得积分10
17秒前
18秒前
M鹿M完成签到 ,获得积分10
22秒前
大虫子完成签到,获得积分10
29秒前
苹果大侠完成签到 ,获得积分10
35秒前
月夕完成签到 ,获得积分10
40秒前
iuhgnor完成签到,获得积分10
41秒前
大轩完成签到 ,获得积分10
46秒前
67号完成签到 ,获得积分10
46秒前
韶华若锦完成签到 ,获得积分20
48秒前
mix完成签到,获得积分10
49秒前
49秒前
49秒前
汉堡包应助海绵宝宝采纳,获得10
49秒前
506407完成签到,获得积分10
50秒前
蛋花肉圆汤完成签到,获得积分10
50秒前
hgl发布了新的文献求助10
51秒前
kek完成签到 ,获得积分10
51秒前
邢邢完成签到,获得积分10
53秒前
飞飞完成签到,获得积分10
53秒前
青青完成签到 ,获得积分10
54秒前
55秒前
fatcat发布了新的文献求助10
55秒前
冷静的网络完成签到 ,获得积分10
56秒前
77完成签到 ,获得积分10
56秒前
wangzhenghua完成签到 ,获得积分10
57秒前
轻歌水越完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293975
求助须知:如何正确求助?哪些是违规求助? 4443988
关于积分的说明 13831887
捐赠科研通 4327968
什么是DOI,文献DOI怎么找? 2375834
邀请新用户注册赠送积分活动 1371109
关于科研通互助平台的介绍 1336150